Skip to main content
Log in

Structure-function relationship of substrate length specificity of dextran glucosidase from Streptococcus mutans

  • Review
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Dextran glucosidase from Streptococcus mutans (SMDG), an exo-type glucosidase of glycoside hydrolase (GH) family 13, specifically hydrolyzes an α-1,6-glucosidic linkage at the non-reducing ends of isomaltooligosaccharides and dextran. SMDG shows the highest sequence similarity to oligo-1,6-glucosidases (O16Gs) among GH family 13 enzymes, but these enzymes are obviously different in terms of substrate chain length specificity. SMDG efficiently hydrolyzes both short-and long-chain substrates, while O16G acts on only short-chain substrates. We focused on this difference in substrate specificity between SMDG and O16G, and elucidated the structure-function relationship of substrate chain length specificity in SMDG. Crystal structure analysis revealed that SMDG consists of three domains, A, B, and C, which are commonly found in other GH family 13 enzymes. The structural comparison between SMDG and O16G from Bacillus cereus indicated that Trp238, spanning subsites +1 and +2, and short βα loop 4, are characteristic of SMDG, and these structural elements are predicted to be important for high activity toward long-chain substrates. The substrate size preference of SMDG was kinetically analyzed using two mutants: (i) Trp238 was replaced by a smaller amino acid, alanine, asparagine or proline; and (ii) short βα loop 4 was exchanged with the corresponding loop of O16G. Mutant enzymes showed lower preference for long-chain substrates than wild-type enzyme, indicating that these structural elements are essential for the high activity toward long-chain substrates, as implied by structural analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CGTase:

cyclodextrin glucanotransferase

DP:

degree of polymerization

GH:

glycoside hydrolase

O16G:

oligo-1,6-glucosidase

SMDG:

Streptococcus mutans dextran glucosidase

TVAII:

Thermoactinomyces vulgaris R-47 α-amylase II

References

  • Coutinho P.M. & Henrissat B. 1999. Carbohydrate-active enzymes: an integrated database approach, pp. 3–12. In: Gilbert H.J., Davies G., Henrissat B. & Svensson B. (eds), Recent Advances in Carbohydrate Bioengineering, The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Hondoh H., Kuriki T. & Matsuura Y. 2003. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J. Mol. Biol. 326: 177–188.

    Article  PubMed  CAS  Google Scholar 

  • Hondoh H., Saburi W., Mori H., Okuyama M., Nakada T., Matsuura Y. & Kimura A. 2008. Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J. Mol. Biol. 378: 911–920.

    Article  CAS  Google Scholar 

  • Inohara-Ochiai M., Nakayama T., Goto R., Nakao M., Ueda T. & Shibano Y. 1997. Altering substrate specificity of Bacillus sp. SAM1606 α-glucosidase by comparative site-directed mutagenesis. J. Biol. Chem. 272: 1601–1607.

    Article  PubMed  CAS  Google Scholar 

  • Kadziola A., Sřgaard M., Svensson B. & Haser R. 1998. Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J. Mol. Biol. 278: 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Linger L. & Sund M.L. 1981. Characterization of dextran glucosidase (1,6-α-d-glucan glucohydrolase) of Streptococcus mitis. Caries Res. 15: 436–444.

    Article  Google Scholar 

  • MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20.

    PubMed  CAS  Google Scholar 

  • Noguchi A., Yano M., Ohshima Y., Hemmi H., Inohara-Ochiai M., Okada M., Min K.S., Nakayama T. & Nishino T. 2003. Deciphering the molecular basis of the broad substrate specificity of α-glucosidase from Bacillus sp. SAM1606. J. Biochem. 134: 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Ohya T., Sawai T., Uemura S. & Abe K. 1978. Some catalytic properties of an exo-1,6-α-glucosidae (glucodextranase) from Arthrobacter globiformis 142. Agric. Biol. Chem. 42: 571–577.

    CAS  Google Scholar 

  • Stam M.R., Danchin E.G., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Russell R.R., Aduse-Opoku J., Sutcliffe I.C., Tao L. & Ferretti J.J. 1992. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 4631–4637.

    PubMed  CAS  Google Scholar 

  • Russell R.R. & Ferretti J.J. 1990. Nucleotide sequence of the dextran glucosidase (dexB) gene of Streptococcus mutans. J. Gen. Micorobiol. 136: 803–810.

    CAS  Google Scholar 

  • Saburi W., Mori H., Saito S., Okuyama M. & Kimura A. 2006. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim. Biophys. Acta 1764: 688–698.

    PubMed  CAS  Google Scholar 

  • Skov L.K., Mirza O., Henriksen A., De Montalk G.P., Remaud-Simeon M., Sarcabal P. Willemot R. M., Monsan P. & Gajhede M. 2001. Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family. J. Biol. Chem. 276: 25273–25278.

    Article  PubMed  CAS  Google Scholar 

  • Sprogoe D., van den Broek L.A.M., Mirza O., Kastrup J.S., Voragen A.G.J., Gajhede M. & Skov L.K. 2004. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis. Biochemistry 43: 1156–1162.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y., Aoki R. & Hayashi H. 1982. Assignment of a p-nitrophenyl-α-d-glucopyranoside-hydrolyzing-α-glucosidase of Bacillus cereus ATCC 7064 to an exo-oligo-1,6-glucosidase. Biochim. Biophys. Acta 704: 476–483.

    CAS  Google Scholar 

  • Suzuki Y., Fujii H., Uemura H. & Suzuki M. 1987. Purification and characterization of extremely thermostable exo-oligo-1,6-glucosidase from a caldoactive Bacillus sp. KP 1228. Starch 39: 17–23.

    Article  CAS  Google Scholar 

  • Suzuki Y. & Tomura Y. 1986. Purification and characterization of Bacillus coagulans oligo-1,6-glucosidase. Eur. J. Biochem. 158: 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y., Yuki T., Kishigami T. & Abe S. 1976. Purification and properties of extracellular α-glucosidase of a thermophile, Bacillus thermoglucosidus KP 1006. Biochim. Biophys. Acta 445: 386–397.

    PubMed  CAS  Google Scholar 

  • Tao L., Sutcliffe I.C., Russell R.R. & Ferretti J.J. 1993. Cloning and expression of the multiple sugar metabolism (msm) operon of Streptococcus mutans in heterologous streptococcal hosts. Infect. Immun. 61: 1121–1125.

    PubMed  CAS  Google Scholar 

  • van der Veen B.A., Leemhuis H., Kralj S., Uitdehaag J.C.M., Dijkstra B.W. & Dijkhuizen L. 2001. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specifity of cyclodextringlycosyltransferase. J. Biol. Chem. 276: 44557–44562.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K., Hata Y., Kizaki H., Katsube Y. & Suzuki Y. 1997. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. 269: 142–153.

    Article  PubMed  CAS  Google Scholar 

  • Yokota T., Tonozuka T., Shimura Y., Ichikawa K., Kamitori S. & Sakano Y. 2001. Structure of Thermoactinomyces vulgaris R-47 α-amylase II complexed with substrate analogue. Biosci. Biotechnol. Biochem. 65: 619–626.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wataru Saburi or Atsuo Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saburi, W., Hondoh, H., Kim, YM. et al. Structure-function relationship of substrate length specificity of dextran glucosidase from Streptococcus mutans . Biologia 63, 1000–1005 (2008). https://doi.org/10.2478/s11756-008-0165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0165-1

Key words

Navigation