Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2014

Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process

  • Lucjan Chmielarz EMAIL logo , Andrzej Kowalczyk , Magdalena Wojciechowska , Paweł Boroń , Barbara Dudek and Marek Michalik
From the journal Chemical Papers

Abstract

The intercalation of natural montmorillonite with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by the surfactant-directed method resulted in the formation of high surface area porous materials; these were tested as catalytic supports for the process of selective catalytic reduction of NO (DeNOx). The incorporation of titanium or aluminium into the structure of the silica pillars significantly increased the surface acidity of the clay samples. Iron and copper were deposited onto the surface of the pillared clays mainly in the form of monomeric isolated cations and oligomeric metal oxide species. The contribution of the latter species was higher in the clay intercalated with SiO2-TiO2 pillars than in the samples modified with SiO2 and SiO2-Al2O3 pillars. The pillared clay-based catalysts were active in the DeNOx process but, in this group, the best results were obtained for the clay intercalated with SiO2-TiO2 pillars and doped with iron and copper. The catalytic performance of the samples is discussed in respect of their surface acidity and active forms of transition metal species deposited.

[1] Adams, J. M., & McCabe, R. W. (2006). Clay minerals as catalysts. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science (pp. 541–581). Amsterdam, The Netherlands: Elsevier. http://dx.doi.org/10.1016/S1572-4352(05)01017-210.1016/S1572-4352(05)01017-2Search in Google Scholar

[2] Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18, 1–36. DOI: 10.1016/s0926-3373(98)00040-x. http://dx.doi.org/10.1016/S0926-3373(98)00040-X10.1016/S0926-3373(98)00040-XSearch in Google Scholar

[3] Centi, G., & Perathoner, S. (1995). Adsorption and reactivity of NO on copper-on-alumina catalysts: II. Adsorbed species and competitive pathways in the reaction of NO with NH3 and O2. Journal of Catalysis, 152, 93–102. DOI: 10.1006/jcat.1995.1063. http://dx.doi.org/10.1006/jcat.1995.106310.1006/jcat.1995.1063Search in Google Scholar

[4] Chmielarz, L., Kuśtrowski, P., Dziembaj, R., Cool, P., & Vansant, E. F. (2007). Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species. Catalysis Today, 119, 181–186. DOI: 10.1016/j.cattod.2006.08.017. http://dx.doi.org/10.1016/j.cattod.2006.08.01710.1016/j.cattod.2006.08.017Search in Google Scholar

[5] Chmielarz, L., Kuśtrowski, P., Piwowarska, Z., Dudek, B., Gil, B., & Michalik, M. (2009a). Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 88, 331–340. DOI: 10.1016/j.apcatb.2008.11.001. http://dx.doi.org/10.1016/j.apcatb.2008.11.00110.1016/j.apcatb.2008.11.001Search in Google Scholar

[6] Chmielarz, L., Piwowarska, Z., Kuśtrowski, P., Gil, B., Adamski, A., Dudek, B., & Michalik, M. (2009b). Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 91, 449–459. DOI: 10.1016/j.apcatb.2009.06.014. http://dx.doi.org/10.1016/j.apcatb.2009.06.01410.1016/j.apcatb.2009.06.014Search in Google Scholar

[7] Chmielarz, L., Wojciechowska, M., Rutkowska, M., Adamski, A., Węegrzyn, A., Kowalczyk, A., Dudek, B., Boroń, P., Michalik, M., & Matusiewicz, A. (2012). Acid-activated vermiculites as catalysts of the DeNOx process. Catalysis Today, 191, 25–31. DOI: 10.1016/j.cattod.2012.03.042. http://dx.doi.org/10.1016/j.cattod.2012.03.04210.1016/j.cattod.2012.03.042Search in Google Scholar

[8] Chmielarz, L., Jabłońska, M., Strumiński, A., Piwowarska, Z., Węgrzyn, A., Witkowski, S., & Michalik, M. (2013). Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Applied Catalysis B: Environmental, 130–131, 152–162. DOI: 10.1016/j.apcatb.2012.11.004. http://dx.doi.org/10.1016/j.apcatb.2012.11.00410.1016/j.apcatb.2012.11.004Search in Google Scholar

[9] Ferella, F., Stoehr, J., De Michelis, I., & Hornung, A. (2013). Zirconia and alumina based catalysts for steam reforming of naphthalene. Fuel, 105, 614–629. DOI: 10.1016/j.fuel.2012.09.052. http://dx.doi.org/10.1016/j.fuel.2012.09.05210.1016/j.fuel.2012.09.052Search in Google Scholar

[10] Galarneau, A., Barodawalla, A., & Pinnavaia, T. J. (1995). Porous clay heterostructures formed by gallery-templated synthesis. Nature, 374, 529–531. DOI: 10.1038/374529a0. http://dx.doi.org/10.1038/374529a010.1038/374529a0Search in Google Scholar

[11] Gregg, S. J., & Sing, K. S. W. (1982). Adsorption surface area and porosity. London, UK: Academic Press. Search in Google Scholar

[12] He, H. P., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Yunfel, X. F., & Kloprogge, J. T. (2006). Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262–271. DOI: 10.1016/j.clay.2005.10.011. http://dx.doi.org/10.1016/j.clay.2005.10.01110.1016/j.clay.2005.10.011Search in Google Scholar

[13] Ismagilov, Z. R., Yashnik, S. A., Anufrienko, V. F., Larina, T. V., Vasenin, N. T., Bulgakov, N. N., Vosel, S. V., & Tsykoza, L. T. (2004). Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts. Applied Surface Science, 226, 88–93. DOI: 10.1016/j.apsusc.2003.11.035. http://dx.doi.org/10.1016/j.apsusc.2003.11.03510.1016/j.apsusc.2003.11.035Search in Google Scholar

[14] Iwamoto, M., Yahiro, H., Mine, Y., & Kagawa, S. (1989). Excessively copper ion-exchanged ZSM-5 zeolites as highly active catalysts for direct decomposition of nitrogen monoxide. Chemistry Letters, 18, 213–216. DOI: 10.1246/cl.1989.213. http://dx.doi.org/10.1246/cl.1989.21310.1246/cl.1989.213Search in Google Scholar

[15] Iwamoto, M., Yahiro, H., Mizuno, N., Zhang, W. X., Mine, Y., Furukawa, H., & Kagawa, S. (1992). Removal of nitrogen monoxide through a novel catalytic process. 2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites. The Journal of Physical Chemistry, 96, 9360–9366. DOI: 10.1021/j100202a055. http://dx.doi.org/10.1021/j100202a05510.1021/j100202a055Search in Google Scholar

[16] Komadel, P., Madejová, J., Janek, M., Gates, W. P., Kirkpartick, R. J., & Stucki, J.W. (1996). Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44, 228–236. DOI: 10.1346/ccmn.1996.0440208. http://dx.doi.org/10.1346/CCMN.1996.044020810.1346/CCMN.1996.0440208Search in Google Scholar

[17] Komatsu, T., Nunokawa, M., Moon, I. S., Takahara, T., Namba, S., & Yashima, T. (1994). Kinetic studies of reduction of nitric oxide with ammonia on Cu2+-exchanged zeolites. Journal of Catalysis, 148, 427–437. DOI: 10.1006/jcat.1994.1229. http://dx.doi.org/10.1006/jcat.1994.122910.1006/jcat.1994.1229Search in Google Scholar

[18] Lei, G. D., Adelman, B. J., Sárkány, J., & Sachtler, W. M. H. (1995). Identification of copper(II) and copper(I) and their interconversion in Cu/ZSM-5 De-NOx catalysts. Applied Catalysis B: Environmental, 5, 245–256. DOI: 10.1016/0926-3373(94)00043-3. http://dx.doi.org/10.1016/0926-3373(94)00043-310.1016/0926-3373(94)00043-3Search in Google Scholar

[19] Mendes, F. M. T., & Schmal, M. (1997). The cyclohexanol dehydrogenation on Rh-Cu/Al2O3 catalysts part 1. Characterization of the catalyst. Applied Catalysis A: General, 151, 393–408. DOI: 10.1016/s0926-860x(96)00316-x. http://dx.doi.org/10.1016/S0926-860X(96)00316-X10.1016/S0926-860X(96)00316-XSearch in Google Scholar

[20] Pérez-Ramírez, J., Kumar, M. S., & Brückner, A. (2004). Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. Journal of Catalysis, 223, 13–27. DOI: 10.1016/j.jcat.2004.01.007. http://dx.doi.org/10.1016/j.jcat.2004.01.00710.1016/j.jcat.2004.01.007Search in Google Scholar

[21] Ravichandran, J., & Sivasankar, B. (1997). Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays and Clay Minerals, 45, 854–858. DOI: 10.1346/ccmn.1997.0450609. http://dx.doi.org/10.1346/CCMN.1997.045060910.1346/CCMN.1997.0450609Search in Google Scholar

[22] Slade, P. G., & Gates, W. P. (2004). The swelling of HDTMA smectites as influenced by their preparation and layer charges. Applied Clay Science, 25, 93–101. DOI: 10.1016/j.clay.2003.07.007. http://dx.doi.org/10.1016/j.clay.2003.07.00710.1016/j.clay.2003.07.007Search in Google Scholar

[23] Steinbach, S., Grünwald, J., Glückert, U., & Sattelmayer, T. (2007). Characterization of structured hydrolysis catalysts for urea-SCR. Topics in Catalysis, 42–43, 99–103. DOI: 10.1007/s11244-007-0159-1. http://dx.doi.org/10.1007/s11244-007-0159-110.1007/s11244-007-0159-1Search in Google Scholar

[24] Valyon, J., & Hall, W. K. (1993). Studies of the surface species formed from nitric oxide on copper zeolites. The Journal of Physical Chemistry, 97, 1204–1212. DOI: 10.1021/j100108a016. http://dx.doi.org/10.1021/j100108a01610.1021/j100108a016Search in Google Scholar

[25] Vicente, M. A., Bañares-Muñoz, M. A., Gandia, L. M., & Gil, A. (2001). On the structural changes of a saponite intercalated with various polycations upon thermal treatments. Applied Catalysis A: General, 217, 191–204. DOI: 10.1016/s0926-860x(01)00603-2. http://dx.doi.org/10.1016/S0926-860X(01)00603-210.1016/S0926-860X(01)00603-2Search in Google Scholar

[26] Wójtowicz, M. A., Pels, J. R., & Moulijn, J. A. (1993). Combustion of coal as a source of N2O emission. Fuel Processing Technology, 34, 1–71. DOI: 10.1016/0378-3820(93)90061-8. http://dx.doi.org/10.1016/0378-3820(93)90061-810.1016/0378-3820(93)90061-8Search in Google Scholar

[27] Wypych, F., Adad, L. B., Mattoso, N., Marangon, A. A. S., & Schreiner, W. H. (2005). Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. Journal of Colloid and Interface Science, 283, 107–112. DOI: 10.1016/j.jcis.2004.08.139. http://dx.doi.org/10.1016/j.jcis.2004.08.13910.1016/j.jcis.2004.08.139Search in Google Scholar PubMed

[28] Xu, S. H., & Boyd, S. A. (1995). Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir, 11, 2508–2514. DOI: 10.1021/la00007a033. http://dx.doi.org/10.1021/la00007a03310.1021/la00007a033Search in Google Scholar

[29] Zhu, R. L., Zhu, L. Z., Zhu, J. X., & Xu, L. H. (2008). Structure of cetyltrimethylammonium intercalated hydrobiotite. Applied Clay Science, 42, 224–231. DOI: 10.1016/j.clay.2007.12.004. http://dx.doi.org/10.1016/j.clay.2007.12.00410.1016/j.clay.2007.12.004Search in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0463-0/html
Scroll to top button