Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 17, 2013

Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil

  • Cetin Kantar EMAIL logo , Aydeniz Demir and Nurcan Koleli
From the journal Chemical Papers

Abstract

Laboratory batch sorption-desorption and column experiments were performed to better understand the effects of microbial exopolymeric substances (EPS) on Cr(III) sorption/desorption rates in the soil-water system. The experiments were carried out in two different modes: one mode (sorption) in which Cr(III) and EPS were applied simultaneously, and the other (desorption) included the sequential application of Cr(III) and EPS to the soil-water system. The batch sorption and desorption experiments showed that, while chromium(III) desorption was significantly enhanced in the presence of EPS relative to non-EPS-containing systems, the desorption rates were much smaller than the sorption rates, and the fraction dissolved by EPS accounted for only a small portion of the total chromium initially sorbed onto soil minerals. Similarly, the column experiments suggested that, while the microbial EPS led to an increase in Cr dissolution relative to non-EPS-containing systems, only a small portion of the total chromium initially added to the soil was mobilised. The differences observed in Cr sorption and desorption rates can be explained through the very low solubility and strong interactions of chromium species with soil minerals as well as the mass transfer effects associated with low diffusion rates. The overall results suggest that, while microbial EPS may play an important role in microbial Cr(VI) treatment in sub-surface systems due to the formation of soluble Cr-EPS complexes, the extent and degree of Cr mobilisation are highly dependent on the type of initial Cr sorption.

[1] Aquino, S. F., & Stuckey, D. C. (2004). Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water Research, 38, 255–266. DOI: 10.1016/j.watres.2003.09.031. http://dx.doi.org/10.1016/j.watres.2003.09.03110.1016/j.watres.2003.09.031Search in Google Scholar

[2] Axe, K., & Persson, P. (2001). Time-dependent surface speciation of oxalate at the water-boehmite (γ-AlOOH) interface: implications for dissolution. Geochimica et Cosmochimica Acta, 65, 4481–4492. DOI: 10.1016/s0016-7037(01)00750-5. http://dx.doi.org/10.1016/S0016-7037(01)00750-510.1016/S0016-7037(01)00750-5Search in Google Scholar

[3] Burgisser, C. A., Cernik, M., Borkovec, M., & Sticher, H. (1993). Determination of nonlinear adsorption isotherms from column experiments: an alternative to batch studies. Environmental Science & Technology, 27, 943–948. DOI: 10.1021/es00042a018. http://dx.doi.org/10.1021/es00042a01810.1021/es00042a018Search in Google Scholar

[4] Cettn, Z., Kantar, C., & Alpaslan, M. (2009). Interactions between uronic acids and chromium(III). Environmental Toxicology and Chemistry, 28, 1599–1608. DOI: 10.1897/08-654.s1. http://dx.doi.org/10.1897/08-654.110.1897/08-654.S1Search in Google Scholar

[5] Csobán, K., & Joó, P. (1999). Sorption of Cr(III) on silica and aluminum oxide: experiments and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, 97–112. DOI: 10.1016/s0927-7757(98)00421-x http://dx.doi.org/10.1016/S0927-7757(98)00421-X10.1016/S0927-7757(98)00421-XSearch in Google Scholar

[6] Davis, J. A., & Kent, B. D. (1990). Surface complexation modeling in aqueous geochemistry. Reviews in Mineralogy and Geochemistry, 23, 177–260. Search in Google Scholar

[7] Dogan, N. M., Kantar, C., Gulcan, S., Dodge, C. J., Yilmaz, B. C., & Mazmanci, M. A. (2011). Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environmental Science & Technology, 45, 2278–2285. DOI: 10.1021/es102095t. http://dx.doi.org/10.1021/es102095t10.1021/es102095tSearch in Google Scholar PubMed

[8] Fendorf, S. E., & Sparks, D. L. (1994). Mechanisms of chromium(III) sorption on silica. 2. Effect of reaction conditions. Environmental Science & Technology, 28, 290–297. DOI: 10.1021/es00051a016. http://dx.doi.org/10.1021/es00051a01610.1021/es00051a016Search in Google Scholar PubMed

[9] Fendorf, S. E., Lamble, G. M., Stapleton, M. G., Kelley, M. J., & Sparks, D. L. (1994). Mechanisms of chromium(III) sorption on silica. 1. Chromium (III) surface structure derived by extended X-ray absorption fine structure spectroscopy. Environmental Science & Technology, 28, 284–289. DOI: 10.1021/es00051a015. http://dx.doi.org/10.1021/es00051a01510.1021/es00051a015Search in Google Scholar PubMed

[10] Fendorf, S. E., Li, G. C., & Gunter, M. E. (1996). Micromorphologies and stabilities of chromium(III) surface precipitates elucidated by scanning force microscopy. Soil Science Society of America Journal, 60, 99–106. DOI: 10.2136/sssaj1996.03615995006000010017x. http://dx.doi.org/10.2136/sssaj1996.03615995006000010017x10.2136/sssaj1996.03615995006000010017xSearch in Google Scholar

[11] Guibaud, G., Bordas, F., Saaid, A., D’abzac, P., & Van Hullebusch, E. (2008). Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids and Surfaces B: Biointerfaces, 63, 48–54. DOI: 10.1016/j.colsurfb.2007.11.002 http://dx.doi.org/10.1016/j.colsurfb.2007.11.00210.1016/j.colsurfb.2007.11.002Search in Google Scholar PubMed

[12] Jardine, P. M., Dunnivant, F. M., McCarthy, J. F., & Selim, H. M. (1992). Comparison of models for describing the transport of dissolved organic carbon in aquifer columns. Soil Science Society of America Journal, 56, 393–401. DOI: 10.2136/sssaj1992.03615995005600020009x. http://dx.doi.org/10.2136/sssaj1992.03615995005600020009x10.2136/sssaj1992.03615995005600020009xSearch in Google Scholar

[13] Jensen-Spaulding, J., Shuler, M. L., & Lion, L. W. (2004a). Mobilization of adsorbed copper and lead from naturally aged soil by bacterial extracellular polymers. Water Research, 38, 1121–1128. DOI: 10.1016/j.watres.2003.11.015 http://dx.doi.org/10.1016/j.watres.2003.11.01510.1016/j.watres.2003.11.015Search in Google Scholar

[14] Jensen-Spaulding, A. J., Cabral, K., Shuler, M. L., & Lion, L. W. (2004b). Predicting the rate and extent of cadmium and copper desorption from soils in the presence of bacterial extracellular polymer. Water Research, 38, 2231–2240. DOI: 10.1016/j.watres.2004.02.018 http://dx.doi.org/10.1016/j.watres.2004.02.01810.1016/j.watres.2004.02.018Search in Google Scholar

[15] Kantar, C., & Honeyman, B. D. (2006). Citric acid enhanced remediation of soils contaminated with uranium by soil flushing and soil washing. Journal of Environmental Engineering, 132, 247–255. DOI: 10.1061/(asce)0733-9372(2006)132:2(247). http://dx.doi.org/10.1061/(ASCE)0733-9372(2006)132:2(247)10.1061/(ASCE)0733-9372(2006)132:2(247)Search in Google Scholar

[16] Kantar, C., Cetin, Z., & Demiray, H. (2008). In situ stabilization of chromium (VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic, and alginic acids. Journal of Hazardous Materials, 159, 287–293. DOI: 10.1016/j.jhazmat.2008.02.022. http://dx.doi.org/10.1016/j.jhazmat.2008.02.02210.1016/j.jhazmat.2008.02.022Search in Google Scholar

[17] Kantar, C., Ikizoglu, G., Koleli, N., & Kaya, O. (2009). Modeling Cd(II) adsorption to heterogeneous subsurface soils in the presence of citric acid using a semi-empirical surface complexation approach. Journal of Contaminant Hydrology, 110, 100–109. DOI: 10.1016/j.jconhyd.2009.09.003. http://dx.doi.org/10.1016/j.jconhyd.2009.09.00310.1016/j.jconhyd.2009.09.003Search in Google Scholar

[18] Kantar, C., Demiray, H., & Dogan, N. M. (2011a). Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system. Chemosphere, 82, 1496–1505. DOI: 10.1016/j.chemosphere.2010.11.001. 10.1016/j.chemosphere.2010.11.001Search in Google Scholar

[19] Kantar, C., Demiray, H., Dogan, N. M. & Dodge, C. J. (2011b). Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution. Chemosphere, 82, 1489–1495. DOI: 10.1016/j.chemosphere.2011.01.009. http://dx.doi.org/10.1016/j.chemosphere.2011.01.00910.1016/j.chemosphere.2011.01.009Search in Google Scholar

[20] Lenhart, J. J., Figueroa, L. A., Honeyman, B. D., & Kaneko, D. (1997). Modeling the adsorption of U(VI) onto animal chitin using coupled mass transfer and surface complexation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 243–254. DOI: 10.1016/s0927-7757(96)03865-4 http://dx.doi.org/10.1016/S0927-7757(96)03865-410.1016/S0927-7757(96)03865-4Search in Google Scholar

[21] Liu, H., & Fang, H. H. P. (2002). Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80, 806–811. DOI: 10.1002/bit.10432. http://dx.doi.org/10.1002/bit.1043210.1002/bit.10432Search in Google Scholar PubMed

[22] Manceau, A. A., & Charlet, L. (1992). X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. Journal of Colloid and Interface Science, 148, 425–442. DOI: 10.1016/0021-9797(92)90181-k. http://dx.doi.org/10.1016/0021-9797(92)90181-K10.1016/0021-9797(92)90181-KSearch in Google Scholar

[23] Mason, C. F. V., Turney, W. R., Thomson, B. M., Lu, N., Longmire, P. A., & Chisholm-Brause, C. J. (1997). Carbonate leaching of uranium from contaminated soils. Environmental Science & Technology, 31, 2707–2711. DOI: 10.1021/es960843j. http://dx.doi.org/10.1021/es960843j10.1021/es960843jSearch in Google Scholar

[24] Puzon, G. J., Roberts, A. G., Kramer, D. M., & Xun, L. Y. (2005). Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environmental Science & Technology, 39, 2811–2817. DOI: 10.1021/es048967g. http://dx.doi.org/10.1021/es048967g10.1021/es048967gSearch in Google Scholar PubMed

[25] Puzon, G. J., Tokala, R. K., Zhang, H., Yonge, D., Peyton, B. M., & Xun, L. Y. (2008). Mobility and recalcitrance of organo-chromium(III) complexes. Chemosphere, 70, 2054–2059. DOI: 10.1016/j.chemosphere.2007.09.010. http://dx.doi.org/10.1016/j.chemosphere.2007.09.01010.1016/j.chemosphere.2007.09.010Search in Google Scholar PubMed

[26] Priester, J. H., Olson, S. G., Webb, S. M., Neu, M. P., Hersman, L. E., & Holden, P. A. (2006). Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Applied and Environmental Microbiology, 72, 1988–1996. DOI: 10.1128/aem.72.3.1988-1996.2006. http://dx.doi.org/10.1128/AEM.72.3.1988-1996.200610.1128/AEM.72.3.1988-1996.2006Search in Google Scholar PubMed PubMed Central

[27] Rai, D., Sass, B. M., & Moore, D. A. (1987). Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorganic Chemistry, 26, 345–349. DOI: 10.1021/ic00250a002. http://dx.doi.org/10.1021/ic00250a00210.1021/ic00250a002Search in Google Scholar

[28] Sheng, G. P., Yu, H. Q., & Yue, Z. B. (2005). Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Applied Microbiology and Biotechnology, 69, 216–222. DOI: 10.1007/s00253-005-1990-6. http://dx.doi.org/10.1007/s00253-005-1990-610.1007/s00253-005-1990-6Search in Google Scholar PubMed

[29] Toride, N., Leij, F. J., & van Genuchten, M. T. (1995). The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.0. [Computer program]. Riverside, CA, USA: U.S. Department of Agriculture. Search in Google Scholar

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0427-4/html
Scroll to top button