Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2013

Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash

  • Maria Harja EMAIL logo , Gabriela Buema , Daniel Sutiman and Igor Cretescu
From the journal Chemical Papers

Abstract

This study’s main objective was the development of effective low-cost sorbents for the removal of heavy metal ions from aqueous solutions. The influence of different factors on the sorption capacity of ash and modified ash as low-cost sorbents obtained by different methods was investigated. The synthesis of new ash-based materials was carried out at ambient temperature (20°C), 70°C, and 90°C, respectively, in an alkaline medium with NaOH concentrations of 2 M and 5 M, respectively, corresponding to a mixture with solid/liquid ratios of 1: 3 and 1: 5, respectively. The prepared materials (sorbents) were characterised by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction, and BET surface measurement. Adsorption isotherms were determined using the batch equilibrium method. The results showed that these types of new materials displayed a good capacity to remove copper, nickel, and lead ions (29.97 mg of Cu2+ per g of sorbent, 303 mg of Ni2+ per g of sorbent, and 1111 mg of Pb2+ per g of sorbent) from aqueous solutions. The modified materials were prepared using an alkaline attack (a recognised method used in previous studies), but Romanian ash from a thermal power plant was studied for the above purpose for the first time. Hence, the factors which affect the sorption capacity of the prepared low-cost sorbents were determined and their behaviour was explained, taking into account the composition and structure of the new materials.

[1] Al-Zboon, K., Al-Harahsheh, M. S., & Hani, F. B. (2011). Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 188, 414–421. DOI:10.1016/j.jhazmat.2011.01.133. http://dx.doi.org/10.1016/j.jhazmat.2011.01.13310.1016/j.jhazmat.2011.01.133Search in Google Scholar

[2] Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. DOI: 10.1016/s0304-3894(02)00263-7. http://dx.doi.org/10.1016/S0304-3894(02)00263-710.1016/S0304-3894(02)00263-7Search in Google Scholar

[3] Buema, G., Cimpeanu, S. M., Sutiman, D. M., Bucur, R. D., Rusu, L., Cretescu, I., Ciocinta, R. C., & Harja, M. (2013). Lead removal from aqueous solution by bottom ash. Journal of Food, Agriculture & Environment. (submitted for press) Search in Google Scholar

[4] Ciobanu, G., Ignat, D., Carja, G., & Luca, C. (2009). Hydroxyapatite/polyurethane composite membranes for lead ions removal. Environmental Engineering and Management Journal, 8, 1347–1350. 10.30638/eemj.2009.197Search in Google Scholar

[5] Ciocinta, R. C., Harja, M., Bucur, D., Rusu, L., Barbuta, M., & Munteanu, C. (2012). Improving soil quality by adding modified ash. Environmental Engineering and Management Journal, 11, 297–305. Search in Google Scholar

[6] Depoi, F. S., Pozebon, D., & Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. International Journal of Coal Geology, 76, 227–236. DOI:10.1016/j.coal.2008.07.013. http://dx.doi.org/10.1016/j.coal.2008.07.01310.1016/j.coal.2008.07.013Search in Google Scholar

[7] Djomgoue, P., Siewe, M., Djoufac, E., Kenfack, P., & Njopwouo, D. (2012). Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel in aqueous solution. Applied Surface Science, 258, 7470–7479. DOI:10.1016/j.apsusc.2012.04.065. 10.1016/j.apsusc.2012.04.065Search in Google Scholar

[8] Derco, J., Černochová, L., Krcho, L., & Lalai, A. (2011). Dynamic simulations of waste water treatment plant operation. Chemical Papers, 65, 813–821. DOI: 10.2478/s11696-011-0076-4. http://dx.doi.org/10.2478/s11696-011-0076-410.2478/s11696-011-0076-4Search in Google Scholar

[9] Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas (2009). Low-cost adsorbents: Growing approach to wastewater treatment — a review. Critical Reviews in Environmental Science and Technology, 39, 783–842. DOI:10.1080/10643380801977610. http://dx.doi.org/10.1080/1064338080197761010.1080/10643380801977610Search in Google Scholar

[10] Harja, M, Bąrbutą, M, & Gavrilescu, M. (2009). Study of morphology for geopolymer materials obtained from fly ash. Environmental Engineering and Management Journal, 8, 1021–1027. 10.30638/eemj.2009.150Search in Google Scholar

[11] Harja, M., Barbuta, M., Rusu, L., Munteanu, C., Buema, G., & Doniga, E. (2011a). Simultaneous removal of Astrazone blue and lead onto low cost sorbents based on power plant ash. Environmental Engineering and Management Journal, 10, 341–347. 10.30638/eemj.2011.050Search in Google Scholar

[12] Harja, M., Gurita, A. A., Barbuta, M., & Ciocinta, R. C. (2011b). Zelites from power plant ash for waste water treatment. Lucrari àtiinifice. Seria Agronomie, 54(Supplement), 30–34. Search in Google Scholar

[13] Harja, M., Bucur, D., Cimpeanu, S. M., Ciocinta, R. C., & Gurita, A. A. (2012a). Conversion of ash on zeolites for soil application. Journal of Food, Agriculture & Environment, 10(2), 1056–1059. Search in Google Scholar

[14] Harja, M., Buema, G., Sutiman, D. M., Munteanu, C., & Bucur, D. (2012b). Low cost adsorbents obtained from ash for copper removal. Korean Journal of Chemical Engineering. DOI: 10.1007/s11814-012-0087-z. (in press) 10.1007/s11814-012-0087-zSearch in Google Scholar

[15] Harja, M., Rusu, L., Bucur, D., & Ciocinta, R. C. (2012c). Fly ash-derived zeolites as adsorbents for Ni removal from wastewater. Revue Roumaine de Chimie. (submitted for press) Search in Google Scholar

[16] Hernandez-Ramirez, O., & Holmes, S. M. (2008). Novel and modified materials for wastewater treatment applications. Journal of Material Chemistry, 18, 2751–2761. DOI: 10.1039/b716941h. http://dx.doi.org/10.1039/b716941h10.1039/b716941hSearch in Google Scholar

[17] Izidoro, J. C., Fungaro, D. A., dos Santos, F., & Wang, S. B. (2012a). Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Processing Technology, 97, 38–44. DOI:10.1016/j.fuproc.2012.01.009. http://dx.doi.org/10.1016/j.fuproc.2012.01.00910.1016/j.fuproc.2012.01.009Search in Google Scholar

[18] Izidoro, J. C., Fungaro, D. A., & Wang, S. B. (2012b). Zeolite synthesis from Brazilian coal fly ash for removal of Zn2+ and Cd2+ from water. Advanced Materials Research, 356–360, 1900–1908. DOI: 10.4028/www.scientific.net/AMR.356-360.1900. 10.4028/www.scientific.net/AMR.356-360.1900Search in Google Scholar

[19] Ojha, K., Pradhan, N. C., & Samanta, A. M. (2004). Zeolite from fly ash: synthesis and characterization. Bulletin of Materials Science, 27, 555–564. DOI: 10.1007/bf02707285. http://dx.doi.org/10.1007/BF0270728510.1007/BF02707285Search in Google Scholar

[20] Olgun, A., & Atar, N. (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 18, 1751–1757. DOI:10.1016/j.jiec.2012.03.020. http://dx.doi.org/10.1016/j.jiec.2012.03.02010.1016/j.jiec.2012.03.020Search in Google Scholar

[21] Ozturkcan, A. S., Turhan, K., & Turgut, Z. (2012). Ultrasoundassisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature. Chemical Papers, 66, 61–66. DOI: 10.2478/s11696-011-0097-z. http://dx.doi.org/10.2478/s11696-011-0097-z10.2478/s11696-011-0097-zSearch in Google Scholar

[22] Paprocki, A. (2009). Síntese de zeólitas a partir de cinzas de carvão visando sua utilização na descontaminação de drenagem ácida de mina. Ms. thesis. Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil. Search in Google Scholar

[23] Piuleac, C. G., Curteanu, S., & Cazacu, M. (2010). Optimization by NN-GA technique of the metal complexing process. Potential application in wastewater treatment. Environmental Engineering and Management Journal, 9, 239–247. Search in Google Scholar

[24] Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72. DOI:10.1016/j.coal.2004.04.003. http://dx.doi.org/10.1016/j.coal.2004.04.00310.1016/j.coal.2004.04.003Search in Google Scholar

[25] Poole, C., Prijatama, H., & Rice, N. M. (2000). Synthesis of zeolite adsorbents by hydrothermal treatment of PFA wastes: A comparative study. Minerals Engineering, 13, 831–842. DOI: 10.1016/s0892-6875(00)00072-8. http://dx.doi.org/10.1016/S0892-6875(00)00072-810.1016/S0892-6875(00)00072-8Search in Google Scholar

[26] Qiu, W., & Zheng, Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145, 483–488. DOI:10.1016/j.cej.2008.05.001. http://dx.doi.org/10.1016/j.cej.2008.05.00110.1016/j.cej.2008.05.001Search in Google Scholar

[27] Querol, X., Moreno, N., Umaña, J. C., Alastuey, A., Hernández, E., López-Soler, A., & Plana, F. (2002). Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 50, 413–423. DOI: 10.1016/s0166-5162(02)00124-6. http://dx.doi.org/10.1016/S0166-5162(02)00124-610.1016/S0166-5162(02)00124-6Search in Google Scholar

[28] Rasouli, M., Yaghobi, N., Hafezi, M., & Rasouli, M. (2012). Adsorption of divalent lead ions from aqueous solution using low silica nano-zeolite X. Journal of Industrial and Engineering Chemistry, 18, 1970–1976. DOI:10.1016/j.jiec.2012.05.014. http://dx.doi.org/10.1016/j.jiec.2012.05.01410.1016/j.jiec.2012.05.014Search in Google Scholar

[29] Rosales, E., Pazos M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for theremoval of heavy metal and dye: Chromium and Azure B. Desalination, 284, 150–156. DOI:10.1016/j.desal.2011.08.049. http://dx.doi.org/10.1016/j.desal.2011.08.04910.1016/j.desal.2011.08.049Search in Google Scholar

[30] Ryu, T. G., Ryu, J. C., Choi, C. H., Kim, C. G., Yoo, S. J., Yang, H. S., & Kim, Y. H. (2006). Preparation of Na-P1 zeolite with high cation exchange capacity from coal fly ash. Journal of Industrial and Engineering Chemistry, 12, 401–407. Search in Google Scholar

[31] Sarbak, Z., Stańczyk, A., & Kramer-Wachowiak, M. (2004). Characterization of surface properties of various fly ashes. Powder Technology, 145, 82–87. DOI:10.1016/j.powtec.2004. 04.041. http://dx.doi.org/10.1016/j.powtec.2004.04.04110.1016/j.powtec.2004.04.041Search in Google Scholar

[32] Scott, J., Guang, D., Naeramitmarnsuk, K., Thabuot, M., & Amal, R. (2001). Zeolite synthesis from coal fly ash for the removal of lead ions from aqueous solution. Journal of Chemical Technology and Biotechnology, 77, 63–69. DOI: 10.1002/jctb.521. http://dx.doi.org/10.1002/jctb.52110.1002/jctb.521Search in Google Scholar

[33] Shiguemoto, N., Hayashi, H., & Miyaura, K. (1993). Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. Journal of Materials Science, 28, 4781–4786. DOI: 10.1007/bf00414272. http://dx.doi.org/10.1007/BF0041427210.1007/BF00414272Search in Google Scholar

[34] Šljivić, M., Smičiklas, I., Pejanović, S., & Plećaš, I. (2009). Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Applied Clay Science, 43, 33–40. DOI:10.1016/j.clay.2008.07.009. http://dx.doi.org/10.1016/j.clay.2008.07.00910.1016/j.clay.2008.07.009Search in Google Scholar

[35] Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304, 21–28. DOI:10.1016/j.jcis.2006.07.068. http://dx.doi.org/10.1016/j.jcis.2006.07.06810.1016/j.jcis.2006.07.068Search in Google Scholar PubMed

[36] Um, N. I., Han, G. C., You, K. S., & Ahn, J. W. (2009). Immobilization of Pb, Cd and Cr by synthetic NaP1 zeolites from coal bottom ash treated by density separation. Resources Processing, 56, 130–137. DOI: 10.4144/rpsj.56.130. http://dx.doi.org/10.4144/rpsj.56.13010.4144/rpsj.56.130Search in Google Scholar

[37] Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 402647. DOI:10.5402/2011/402647. http://dx.doi.org/10.5402/2011/40264710.5402/2011/402647Search in Google Scholar

[38] Xu, D., Zhou, X., & Wang, X. K. (2008). Adsorption and desorption of Ni2+ on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Applied Clay Science, 39, 133–141. DOI:10.1016/j.clay.2007.05. 006. http://dx.doi.org/10.1016/j.clay.2007.05.006Search in Google Scholar

[39] Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171, 1–15. DOI: 10.1016/j.jhazmat.2009.05.103. http://dx.doi.org/10.1016/j.jhazmat.2009.05.10310.1016/j.jhazmat.2009.05.103Search in Google Scholar PubMed

[40] Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41, 820–831. DOI: 10.1080/00103621003592 341. http://dx.doi.org/10.1080/00103621003592341Search in Google Scholar

Published Online: 2013-2-14
Published in Print: 2013-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0303-7/html
Scroll to top button