Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 9, 2013

Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium

  • Ragıp Adıgüzel EMAIL logo and Senay Taşcıoğlu
From the journal Chemical Papers

Abstract

Complexation reactions between water-soluble and -insoluble reactants were shown to occur in aqueous media in the presence of normal or reverse surfactant micelles, in significantly higher yields at lower temperatures compared to those achieved in neat organic solvents. The highest yield enhancement in the complexation of novel water-insoluble bis(2-amino-1,3,4-thiadiazolyl)methane and 1,4-bis(2-amino-1,3,4-thiadiazolyl)benzene ligands with Cu(II) ions was achieved in the sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-heptane-water reverse micellar system at the hydration ratio of 15. The results revealed that AOT normal micelles cause a change in the reaction mechanism together with the enhancement of the complex formation. The observed micellar effects were rationalized on basis of the properties of bulk solvents, surfactants and ligands, considering the solvation and hydration ratios of reverse micelles. The results have proved the dependence of complex yield on the amount and accordingly also on the properties of water in the micellar core, indicating that the yield can be maximized by the optimization of the hydration ratio.

[1] Adıgüzel, R., Ergin, Z., Şekerci, M., & Taşcıoğlu, S. (2011a). Synthesis and structural characterization of bis(2-amino-1,3,4-thiadiazolyl)methane complexes. Journal of the Chemical Society of Pakistan, 33, 238–244. Search in Google Scholar

[2] Adıgüzel, R., Şekerci, M., Taşcıoğlu, S., & Ergin, Z. (2011b). Synthesis and structural characterization of novel new Co (II) complexes of heteroatom bearing ligands. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2, 256–267. Search in Google Scholar

[3] Atalay, Y., Yakuphanoglu, F., Şekerci, M., Avcı, D., & Başoğlu, A. (2006). Theoretical studies of molecular structure and vibrational spectra of 2-amino-5-phenyl-1,3,4-thiadiazole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 68–72. DOI: 10.1016/j.saa.2005.06.038. http://dx.doi.org/10.1016/j.saa.2005.06.03810.1016/j.saa.2005.06.038Search in Google Scholar

[4] Bianchini, G., Cavarzan, A., Scarso, A., & Strukul, G. (2009). Asymmetric Baeyer-Villiger oxidation with Co(Salen) and H2O2 in water: striking supramolecular micelles effect on catalysis. Green Chemistry, 11, 1517–1520. DOI: 10.1039/b916262n. http://dx.doi.org/10.1039/b916262n10.1039/b916262nSearch in Google Scholar

[5] Biswas, R., Rohman, N., Pradhan, T., & Buchner, R. (2008). Intramolecular charge transfer reaction, polarity, and dielectric relaxation in AOT/water/heptane reverse micelles: Pool size dependence. The Journal of Physical Chemistry B, 112, 9379–9388. DOI: 10.1021/jp8023149. http://dx.doi.org/10.1021/jp802314910.1021/jp8023149Search in Google Scholar

[6] Christopher, D. J., Yarwood, J., Belton, P. S., & Hills, B. P. (1992). A Fourier transform infrared study of water-head group interactions in reversed micelles containing sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Journal of Colloid and Interface Science, 152, 465–472. DOI: 10.1016/0021-9797(92)90047-p. http://dx.doi.org/10.1016/0021-9797(92)90047-P10.1016/0021-9797(92)90047-PSearch in Google Scholar

[7] Das, D., Nath, D. N., Parui, P. P., & Chowdhury, M. (2006). Magnetic field effect on pyrene-DMA exciples luminescence in non-aqueous AOT reverse micelle. Chemical Physics Letters, 424, 300–306. DOI: 10.1016/j.cplett.2006.04.076. http://dx.doi.org/10.1016/j.cplett.2006.04.07610.1016/j.cplett.2006.04.076Search in Google Scholar

[8] Destrée, C., George, S., Champagne, B., Guillaume, M., Ghijsen, J., & Nagy, J. B. (2008). J-complexes of retinol formed within the nanoparticles prepared from microemulsions. Colloid & Polymer Science, 286, 15–30. DOI: 10.1007/s00396-007-1679-8. http://dx.doi.org/10.1007/s00396-007-1679-810.1007/s00396-007-1679-8Search in Google Scholar

[9] Gonçalves, S. A. P., De Pauli, S. H., Tedesco, A. C., Quina, F. H., Okano, L. T., Bonilha, J. B. S. (2003). Counterion exchange selectivity coefficients at water-in-oil microemulsion interface. Journal of Colloid and Interface Science, 267, 494–499. DOI: 10.1016/s0021-9797(03)00752-5. http://dx.doi.org/10.1016/S0021-9797(03)00752-510.1016/S0021-9797(03)00752-5Search in Google Scholar

[10] Görgülü, A. O., & Çukurovalı, A. (2002). Synthesis and characterization of two 2-amino-5-alkyl-1,3,4-thiadiazolyl carbamate ligands and their Co(II), Ni(II), and Zn(II) complexes. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 32, 1033–1042. DOI: 10.1081/SIM-120005620. http://dx.doi.org/10.1081/SIM-12000562010.1081/SIM-120005620Search in Google Scholar

[11] Huang, S., Voigtritter, K. R., Unger, J. B., & Lipshutz, B. H. (2010). Asymmetric CuH-catalyzed 1,4-reductions in water at room temperature. Synlett, 13, 2041–2044. DOI: 10.1055/s-0030-1258540. 10.1055/s-0030-1258540Search in Google Scholar

[12] Kim, H. U., & Lim, K. H. (2004). A model on the temperature dependence of critical micelle concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 235, 121–128. DOI: 10.1016/j.colsurfa.2003.12.019. http://dx.doi.org/10.1016/j.colsurfa.2003.12.01910.1016/j.colsurfa.2003.12.019Search in Google Scholar

[13] Koparır, M., Cansız, A., & Cn, A. (2005). Synthesis and spectral investigations of 2,5,7-triaryl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-6[7H]-ones. Asian Journal of Chemistry, 17, 1689–1697. Search in Google Scholar

[14] Li, Q., Weng, S., Wu, J., & Zhou, N. (1998). Comparative study on structure of solubilized water in reversed micelles. 1. FT-IR spectroscopic evidence of water/AOT/n-heptane and water/NaDEHP/n-heptane systems. The Journal of Physical Chemistry B, 102, 3168–3174. DOI: 10.1021/jp972254l. http://dx.doi.org/10.1021/jp972254l10.1021/jp972254lSearch in Google Scholar

[15] Lv, R., Cao, C., & Zhu, H. (2004). Synthesis and characterization of ZnS nanowires by AOT micelle-template inducing reaction. Materials Research Bulletin, 39, 1517–1524. DOI: 10.1016/j.materresbull.2004.04.019. http://dx.doi.org/10.1016/j.materresbull.2004.04.01910.1016/j.materresbull.2004.04.019Search in Google Scholar

[16] Maradiya, H. R., & Patel, V. S. (2002). Thiadiazole-based monomeric and polymeric dyes for cellulose triacetate fiber. International Journal of Polymer Analysis and Characterization, 7, 314–330. DOI: 10.1080/10236660290026520. http://dx.doi.org/10.1080/10236660213161Search in Google Scholar

[17] Mohamed, G. G., & Sharaby, C. M. (2007). Metal complexes of Schiff base derived from sulphametrole and o-vanilin. Synthesis, spectral, thermal characterization and biological activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66, 949–958. DOI: 10.1016/j.saa.2006.04.033. http://dx.doi.org/10.1016/j.saa.2006.04.03310.1016/j.saa.2006.04.033Search in Google Scholar

[18] Moulik, S. P., & Paul, B. K. (1998). Structure dynamics and transport properties of microemulsions. Advances in Colloid and Interface Science, 78, 99–195. DOI: 10.1016/s0001-8686(98)00063-3. http://dx.doi.org/10.1016/S0001-8686(98)00063-310.1016/S0001-8686(98)00063-3Search in Google Scholar

[19] Noudeh, G. D., Housaindokht, M., & Bazzaz, B. S. F. (2007). The effect of temperature on thermodynamic parameters of micellization of some surfactants. Journal of Applied Sciences, 7, 47–52. DOI: 10.3923/jas.2007.47.52. http://dx.doi.org/10.3923/jas.2007.47.5210.3923/jas.2007.47.52Search in Google Scholar

[20] Olmstead, E. G., Harman, S. W., Choo, P. L., & Crumbliss, A. L. (2001). Use of SDS micelles to stabilize a ternary intermediate in the reaction ferrioxamine B and 1,10-phenantroline. Inorganic Chemistry, 40, 5420–5427. DOI: 10.1021/ic0008621. http://dx.doi.org/10.1021/ic000862110.1021/ic0008621Search in Google Scholar PubMed

[21] Parui, P. P., Nath, D. N., & Chowdhury, M. (2004). Determination of interfacial dielectric constant of AOT-based reverse micelle by probing magnetic field effect on pyrene-DMA exciplex luminescence. Chemical Physics Letters, 396, 329–334. DOI: 10.1016/j.cplett.2004.08.052. http://dx.doi.org/10.1016/j.cplett.2004.08.05210.1016/j.cplett.2004.08.052Search in Google Scholar

[22] Parui, P. P., Nath, D. N., & Chowdhury, M. (2005). Magnetic field effect on exciplex luminescence: A study of multiple exciplex formation dynamics in biomimicking environment. Chemical Physics Letters, 404, 79–84. DOI: 10.1016/j.cplett.2005.01.069. http://dx.doi.org/10.1016/j.cplett.2005.01.06910.1016/j.cplett.2005.01.069Search in Google Scholar

[23] Paula, S., Sues, W., Tuchtenhagen, J., & Blume, A. (1995). Thermodynamics of micelle formation as a function of temperature: A high sensitivity titration calorimetry study. The Journal of Physical Chemistry, 99, 11742–11751. DOI: 10.1021/j100030a019. http://dx.doi.org/10.1021/j100030a01910.1021/j100030a019Search in Google Scholar

[24] Rao, P. S., Srikanth, B., Rao, V. S. S., Sastry, C. K., & Rao, G. N. (2009). Protonation equilibria of L-aspartic, citric and succinic acids in anionic micellar media. E-Journal of Chemistry, 6, 561–568. DOI: 10.1155/2009/705976. http://dx.doi.org/10.1155/2009/70597610.1155/2009/705976Search in Google Scholar

[25] Riter, R. E., Kimmel, J. R., Undiks, E. P., & Levinger, N. E. (1997). Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. The Journal of Physical Chemistry B, 101, 8292–8297. DOI: 10.1021/jp971732p. http://dx.doi.org/10.1021/jp971732p10.1021/jp971732pSearch in Google Scholar

[26] Samant, B. S., & Bhagwat, S. S. (2011). Enantioselective cycloetherification in a micellar catalysis system. Chinese Journal of Catalysis, 32, 231–234. DOI: 10.1016/s1872-2067(10)60169-6. http://dx.doi.org/10.1016/S1872-2067(10)60169-610.1016/S1872-2067(10)60169-6Search in Google Scholar

[27] Shirota, H., & Segawa, H. (2004). Solvation dynamics of formamide and N,N-dimethylformamide in aerosol OT reverse micelles. Langmuir, 20, 329–335. DOI: 10.1021/la030161r. http://dx.doi.org/10.1021/la030161r10.1021/la030161rSearch in Google Scholar

[28] Silber, J. J., Biasutti, A., Abuin, E., & Lissi, E. (1999). Interactions of small molecules with reverse micelles. Advances in Colloid and Interface Science, 82, 189–252. DOI: 10.1016/s0001-8686(99)00018-4. http://dx.doi.org/10.1016/S0001-8686(99)00018-410.1016/S0001-8686(99)00018-4Search in Google Scholar

[29] Silber, J. J., Falcone, R. D., Correa, N. M., Biasutti, M. A., Abuin, E., Lissi, E., & Campodonico, P. (2003). Exploratory study of the effect of polar solvents upon the partitioning of solutes in nonaqueous reverse micellar solutions. Langmuir, 19, 2067–2071. DOI: 10.1021/la026484p. http://dx.doi.org/10.1021/la026484p10.1021/la026484pSearch in Google Scholar

[30] Taşcıoğlu, S. (1996). Micellar solutions as reaction media. Tetrahedron, 52, 11113–11152. DOI: 10.1016/0040-4020(96)00669-2. http://dx.doi.org/10.1016/0040-4020(96)00669-210.1016/0040-4020(96)00669-2Search in Google Scholar

[31] Taşcıoğlu, S., & Gürdere, M. B. (2000). Elucidation of the mechanism of an aromatic substitution reaction by the utilization of micelles as mechanistic probes. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 173, 101–107. DOI: 10.1016/s0927-7757(00)00575-6. http://dx.doi.org/10.1016/S0927-7757(00)00575-610.1016/S0927-7757(00)00575-6Search in Google Scholar

[32] Terzioğlu, N., & Gürsoy, A. (2003). Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-b][1,3,4]thiadiazole-5-carbohydrazide. European Journal of Medicinal Chemistry, 38, 781–786. DOI: 10.1016/s0223-5234(03)00138-7. http://dx.doi.org/10.1016/S0223-5234(03)00138-710.1016/S0223-5234(03)00138-7Search in Google Scholar

[33] Tošić, M. S., Vasić, V. M., Nedeljković, J. M., & Ilić, L. A. (1997). Influence of sodium dodecyl sulfate micelles on the kinetics of complex formation between Pd(H2O) 42+ and glutathione. Polyhedron, 16, 1157–1160. DOI: 10.1016/s0277-5387(96)00373-7. http://dx.doi.org/10.1016/S0277-5387(96)00373-710.1016/S0277-5387(96)00373-7Search in Google Scholar

[34] Wangsakan, A., Chinachoti, P., & McClements, D. J. (2006). Isothermal titration calorimetry study of the influence of temperature, pH and salt on maltodextrin-anionic surfactant interactions. Food Hydrocolloids, 20, 461–467. DOI: 10.1016/j.foodhyd.2005.03.008. http://dx.doi.org/10.1016/j.foodhyd.2005.03.00810.1016/j.foodhyd.2005.03.008Search in Google Scholar

[35] Zingaretti, L., Correa, N. M., Boscatto, L., Chiacchiera, S. M., Durantini, E. N., Bertolotti, S. G., Rivarola, C. R., & Silber, J. J. (2005). Distribution of amines in water/AOT/n-hexane reverse micelles: influence of the amine chemical structure. Journal of Colloid and Interface Science, 286, 245–252. DOI: 10.1016/j.jcis.2004.12.057. http://dx.doi.org/10.1016/j.jcis.2004.12.05710.1016/j.jcis.2004.12.057Search in Google Scholar PubMed

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0283-7/html
Scroll to top button