Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 23, 2011

Reduction of ostazine dyes’ photodynamic effect by Fenton reaction

  • Tomáš Mackuľak EMAIL logo , Miroslava Smolinská , Petra Olejníková , Josef Prousek and Alžbeta Takáčová
From the journal Chemical Papers

Abstract

The aim of this work was to evaluate the influence of ostazine dyes on the microbial population in environment. These dyes act as photosensitizers after irradiation by visible light. The photodynamic effect was induced in this way. The effect of irradiated water solutions of ostazine green, ostazine yellow, and ostazine blue on the Escherichia coli growth was tested. Furthermore, the effect of these dyes (at c = 3.5 μg mL−1) on bacterial growth was evaluated after their pretreatment by the Fenton reaction. Dramatic changes in dyes’ toxicity were observed after coloured solutions were pretreated by the Fenton reaction.

[1] Bouasla, C., El-Hadi Samar, M., & Ismail, F. (2010). Degradation of methyl violet 6B dye by the Fenton process. Desalination, 254, 35–41. DOI: 10.1016/j.desal.2009.12.017. http://dx.doi.org/10.1016/j.desal.2009.12.01710.1016/j.desal.2009.12.017Search in Google Scholar

[2] Čík, G., Bujdáková, H., & Šeršeň, F. (2001). Study of fungicidal and antibacterial effect of the Cu(II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels. Chemosphere, 44, 313–319. http://dx.doi.org/10.1016/S0045-6535(00)00306-410.1016/S0045-6535(00)00306-4Search in Google Scholar

[3] Daud, N. K., Ahmad, M. A., & Hameed, B. H. (2010). Decolorization of Acid Red 1 dye solution by Fenton-like process using Fe-montmorillonite K10 catalyst. Chemical Engineering Journal, 165, 111–116. DOI: 10.1016/j.cej.2010.08.072. http://dx.doi.org/10.1016/j.cej.2010.08.07210.1016/j.cej.2010.08.072Search in Google Scholar

[4] de Aragão Umbuzeiro, G., Freeman, H., Warren, S. H., Palma de Oliveira, D., Terao, Y., Watanabe, T., & Claxton, L. D. (2005). The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 60, 55–64. DOI: 10.1016/j.chemosphere.2004.11.100. http://dx.doi.org/10.1016/j.chemosphere.2004.11.10010.1016/j.chemosphere.2004.11.100Search in Google Scholar

[5] Derco, J., Gotvajn, A. Ž., Zagorc-Končan, J., Almásiová, B., & Kassai, A. (2010). Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 64, 237–245. DOI: 10.2478/s11696-009-0116-5. http://dx.doi.org/10.2478/s11696-009-0116-510.2478/s11696-009-0116-5Search in Google Scholar

[6] Devi, G. V., Kumar, S. G., Raju, K. S. A., & Rajashekhar, K. E. (2010). Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron. Chemical Papers, 64, 378–385. DOI: 10.2478/s11696-010-0011-0. http://dx.doi.org/10.2478/s11696-010-0011-010.2478/s11696-010-0011-0Search in Google Scholar

[7] Devi, L. G., Raju, K. S. A., Kumar, S.G., & Rajashekhar, K. E. (2011). Photo-degradation of di azo dye Bismarck Brown by advanced photo-Fenton process: Influence of inorganic anions and evaluation of recycling efficiency of iron powder. Journal of the Taiwan Institute of Chemical Engineers, 42, 341–349. DOI: 10.1016/j.jtice.2010.05.010. http://dx.doi.org/10.1016/j.jtice.2010.05.01010.1016/j.jtice.2010.05.010Search in Google Scholar

[8] Dudová, B., Hudecová, D., Pokorny, R., Mičková, M., Segľa, P., & Melník, M. (2002). Copper complexes with bioactive ligands. Part II — Antifungal activity. Folia Microbiologica, 47, 225–229. DOI: 10.1007/BF02817642. http://dx.doi.org/10.1007/BF0281764210.1007/BF02817642Search in Google Scholar

[9] El-Desoky, H. S., Ghoneim, M. M., & Zidan, N. M. (2010). Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 264, 143–150. DOI: 10.1016/j.desal.2010.07.018. http://dx.doi.org/10.1016/j.desal.2010.07.01810.1016/j.desal.2010.07.018Search in Google Scholar

[10] Feng, F., Xu, Z. L., Li, X. H., You, W. T., & Zhen, Y. (2010). Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process. Journal of Environmental Sciences, 22, 1657–1665. DOI: 10.1016/s1001-0742(09)60303-x. http://dx.doi.org/10.1016/S1001-0742(09)60303-X10.1016/S1001-0742(09)60303-XSearch in Google Scholar

[11] Fu, F. L., Wang, Q., & Tang, B. (2010). Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials, 174, 17–22. DOI: 10.1016/j.jhazmat.2009.09.009. http://dx.doi.org/10.1016/j.jhazmat.2009.09.00910.1016/j.jhazmat.2009.09.009Search in Google Scholar

[12] Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E., & Herrmann, J. M. (2003). Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 158, 27–36. DOI: 10.1016/s1010-6030(03)00016-9. http://dx.doi.org/10.1016/S1010-6030(03)00016-910.1016/S1010-6030(03)00016-9Search in Google Scholar

[13] Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31, 145–157. DOI: 10.1016/s0926-3373(00)00276-9. http://dx.doi.org/10.1016/S0926-3373(00)00276-910.1016/S0926-3373(00)00276-9Search in Google Scholar

[14] Idel-aouad, R., Valiente, M., Yaacoubi, A., Tanouti, B., & López-Mesas, M. (2011). Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745–750. DOI: 10.1016/j.jhazmat.2010.11.056. http://dx.doi.org/10.1016/j.jhazmat.2010.11.05610.1016/j.jhazmat.2010.11.056Search in Google Scholar

[15] Jantová, S., Hudecová, D., Stankovský, Š., Špirková K., & Ružeková, Ľ. (1995). Antibacterial effect of substituted 4-quinazolylhydrazines and their arylhydrazones determined by modified microdilution method. Folia Microbiologica, 40, 611–614. DOI: 10.1007/bf02818517. http://dx.doi.org/10.1007/BF0281851710.1007/BF02818517Search in Google Scholar

[16] Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2005). Decolorization of various azo dyes by bacterial consortium. Dyes and Pigments, 67, 55–61. DOI: 10.1016/j.dyepig.2004.10.008. http://dx.doi.org/10.1016/j.dyepig.2004.10.00810.1016/j.dyepig.2004.10.008Search in Google Scholar

[17] Konovalova, T. A., Lawrence, J., & Kispert, L. D. (2004). Generation of superoxide anion and most likely singlet oxygen in irradiated TiO2 nanoparticles modified by carotenoids. Journal of Photochemistry and Photobiology A: Chemistry, 162, 1–8. DOI: 10.1016/s1010-6030(03)00313-7. http://dx.doi.org/10.1016/S1010-6030(03)00313-710.1016/S1010-6030(03)00313-7Search in Google Scholar

[18] Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26, 881–886. DOI: 10.1016/0043-1354(92)90192-7. http://dx.doi.org/10.1016/0043-1354(92)90192-710.1016/0043-1354(92)90192-7Search in Google Scholar

[19] Kuo, W. S., & Ho, P. H. (2001). Solar photocatalytic decolorization of methylene blue in water. Chemosphere, 45, 77–83. DOI: 10.1016/s0045-6535(01)00008-x. http://dx.doi.org/10.1016/S0045-6535(01)00008-X10.1016/S0045-6535(01)00008-XSearch in Google Scholar

[20] Mackuľak, T., Olejníková, P., Prousek, J., & Švorc, Ľ. (2011). Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment. Chemical Papers, 65, 835–839. DOI: 10.2478/s11696-011-0075-5. http://dx.doi.org/10.2478/s11696-011-0075-510.2478/s11696-011-0075-5Search in Google Scholar

[21] Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59, 73–84. DOI: 10.1016/j.ibiod.2006.08.006. http://dx.doi.org/10.1016/j.ibiod.2006.08.00610.1016/j.ibiod.2006.08.006Search in Google Scholar

[22] Prousek, J. (2007). Fenton chemistry in biology and medicine. Pure and Applied Chemistry, 79, 2325–2338. DOI: 10.1351/pac200779122325. http://dx.doi.org/10.1351/pac20077912232510.1351/pac200779122325Search in Google Scholar

[23] Prousek, J., & Priesolová, S. (2002). Praktické použití kovového železa ve Fentonově reakci na čištěních barevných odpadních. Chemické Listy, 96, 893–896. Search in Google Scholar

[24] Rajaguru, P., Vidya, L., Baskarasethupathi, B., Kumar, P. A., Palanivel, M., & Kalaiselvi, K. (2002). Genotoxicity evaluation of polluted ground water in human peripheral blood lymphocytes using the comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 517, 29–37. DOI: 10.1016/s1383-5718(02)00025-6. http://dx.doi.org/10.1016/S1383-5718(02)00025-610.1016/S1383-5718(02)00025-6Search in Google Scholar

[25] Salazar, R., Garcia-Segura, S., Ureta-Zañartu, M. S., & Brillas, E. (2011). Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochimica Acta, 56, 6371–6379. DOI: 10.1016/j.electacta.2011.05.021. http://dx.doi.org/10.1016/j.electacta.2011.05.02110.1016/j.electacta.2011.05.021Search in Google Scholar

[26] Shu, H. Y., & Chang, M. C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes and Pigments, 65, 25–31. DOI: 10.1016/j.dyepig.2004.06.014. http://dx.doi.org/10.1016/j.dyepig.2004.06.01410.1016/j.dyepig.2004.06.014Search in Google Scholar

[27] Soon, A. N., & Hameed, B. H. (2011). Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination, 269, 1–16. DOI: 10.1016/j.desal.2010.11.002. http://dx.doi.org/10.1016/j.desal.2010.11.00210.1016/j.desal.2010.11.002Search in Google Scholar

[28] van der Zee, F. P., & Villaverde, S. (2005). Combined anaerobic-aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research, 39, 1425–1440. DOI: 10.1016/j.watres.2005.03.007. http://dx.doi.org/10.1016/j.watres.2005.03.00710.1016/j.watres.2005.03.007Search in Google Scholar PubMed

[29] Wang, S. B., Li, H. T., & Xu, L. Y. (2006). Application of zeolite MCM-22 for basic dye removal from wastewater. Journal of Colloid and Interface Science, 295, 71–78. DOI: 10.1016/j.jcis.2005.08.006. http://dx.doi.org/10.1016/j.jcis.2005.08.00610.1016/j.jcis.2005.08.006Search in Google Scholar PubMed

[30] Xu, L. J., & Wang, J. L. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186, 256–264. DOI: 10.1016/j.jhazmat.2010.10.116. http://dx.doi.org/10.1016/j.jhazmat.2010.10.11610.1016/j.jhazmat.2010.10.116Search in Google Scholar PubMed

[31] Zhong, X., Royer, S., Zhang, H., Huang, Q. Q., Xiang, L. J., Valange, S., & Barrault, J. (2011). Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton processes. Separation and Purification Technology, 80, 163–171. DOI: 10.1016/j.seppur.2011.04.024. http://dx.doi.org/10.1016/j.seppur.2011.04.02410.1016/j.seppur.2011.04.024Search in Google Scholar

Published Online: 2011-11-23
Published in Print: 2012-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0104-4/html
Scroll to top button