Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 27, 2009

Characterization of NiFe2O4 nanoparticles synthesized by various methods

  • Hüseyin Kavas EMAIL logo , Nermin Kasapoğlu , Abdülhadi Baykal and Yüksel Köseoğlu
From the journal Chemical Papers

Abstract

Microwave-induced combustion with glycine, CTAB-assisted hydrothermal process with NaOH and NH3, EDTA assisted-hydrothermal methods have been applied to prepare NiFe2O4 nanoparticles for the first time. Structural and magnetic properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmison electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and electron spin resonance spectrometry (EPR). TEM measurements showed that morphology of the product depends on the synthesis method employed. The average cystallite size of NiFe2O4 nanoparticles was in the range of 14–59 nm as measured by XRD. The uncoated sample (Method A) had an EPR linewidth of 1973 Oe, the coated samples reached lower values. The magnetic dipolar interactions existing among the Ni ferrite nanoparticles are reduced by the coatings, which could cause the decrease in the linewidth of the EPR signals. Additionally, the linewidth increases with an increase in the size and the size distribution of nanoparticles.

[1] Ahn, Y., Choi, E. J., Kim, S., & Ok, H. N. (2001). Magnetization and Mössbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate. Materials Letters, 50, 47–52. DOI: 10.1016/S0167-577X(00)00412-2. http://dx.doi.org/10.1016/S0167-577X(00)00412-210.1016/S0167-577X(00)00412-2Search in Google Scholar

[2] Mouallem-Bahout, M., Bertrand, S., & Peńa, O. (2005). Synthesis and characterization of Zn1-x NixFe2O4 spinels prepared by a citrate precursor. Journal of Solid State Chemistry, 178, 1080–1086. DOI: 10.1016/j.jssc.2005.01.009. http://dx.doi.org/10.1016/j.jssc.2005.01.00910.1016/j.jssc.2005.01.009Search in Google Scholar

[3] Chae, K. P., Lee, J.-G., Kweon, H. S., & Lee, Y. B. (2004). The crystallographic, magnetic properties of Al, Ti doped CoFe2O4 powders grown by sol-gel method. Journal of Magnetism and Magnetic Materials, 283, 103–108. DOI: 10.1016/j.jmmm.2004.05.010. http://dx.doi.org/10.1016/j.jmmm.2004.05.01010.1016/j.jmmm.2004.05.010Search in Google Scholar

[4] Chen, D.-H., & He, X.-R. (2001). Synthesis of nickel ferrite nanoparticles by sol-gel method. Materials Research Bulletin, 36, 1369–1377. DOI: 10.1016/S0025-5408(01)00620-1. http://dx.doi.org/10.1016/S0025-5408(01)00620-110.1016/S0025-5408(01)00620-1Search in Google Scholar

[5] Chung, D. Y., & Lee, E. H. (2004). Microwave-induced combustion synthesis of Ce1-x SmxO2-x/2 powder and its characterization. Journal of Alloys and Compounds, 374, 69–73. DOI: 10.1016/j.jallcom.2003.11.094. http://dx.doi.org/10.1016/j.jallcom.2003.11.09410.1016/j.jallcom.2003.11.094Search in Google Scholar

[6] El-Sayed, A. M. (2002). Influence of zinc content on some properties of Ni-Zn ferrites. Ceramics International, 28, 363–367. DOI: 10.1016/S0272-8842(01)00103-1. http://dx.doi.org/10.1016/S0272-8842(01)00103-110.1016/S0272-8842(01)00103-1Search in Google Scholar

[7] Gupta, N., Verma, A., Kashyap, S. C., & Dube, D. C. (2007). Micro structural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel-zinc ferrite thin films for microwave applications. Journal of Magnetism and Magnetic Materials, 308, 137–142. DOI: 10.1016/j.jmmm.2006.05.015. http://dx.doi.org/10.1016/j.jmmm.2006.05.01510.1016/j.jmmm.2006.05.015Search in Google Scholar

[8] Hanh, N., Quy, O. K., Thuy, N. P., Tung, L. D., & Spinu, L. (2003). Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties. Physica B: Condensed Matter, 327, 382–384. DOI: 10.1016/S0921-4526(02)01750-7. http://dx.doi.org/10.1016/S0921-4526(02)01750-710.1016/S0921-4526(02)01750-7Search in Google Scholar

[9] Kasapoğlu, N. (2007). Synthesis and characterization of magnetic spinel nanoparticles. Master Thesis, Fatih University, İstanbul, Turkey. Search in Google Scholar

[10] Kasapoğlu, N., Baykal, A., Köseoğlu, Y., & Toprak, M. S. (2007). Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scripta Materialia, 57, 441–448. DOI: 10.1016/j.scriptamat.2007.04.042. http://dx.doi.org/10.1016/j.scriptamat.2007.04.04210.1016/j.scriptamat.2007.04.042Search in Google Scholar

[11] Kasapoğlu, N., Baykal, A., Köseoğlu, Y., Başaran, A. C., Kavas, H., & Toprak, M. S. (2008). Microwave-induced combustion synthesis and characterization of NixCo1-x Fe2O4 nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0), Central European Journal of Chemistry, 6, 125–130. DOI: 10.2478/s11532-007-0070-4. http://dx.doi.org/10.2478/s11532-007-0070-410.2478/s11532-007-0070-4Search in Google Scholar

[12] Kinemuchi, Y., Ishizaka, K., Suematsu, H., Jiang, W., & Yatsui, K. (2002). Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin Solid Films, 407, 109–113. DOI: 10.1016/S0040-6090(02)00021-4. http://dx.doi.org/10.1016/S0040-6090(02)00021-410.1016/S0040-6090(02)00021-4Search in Google Scholar

[13] Köseoğlu, Y. (2006). Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles. ESR study. Journal of Magnetism and Magnetic Materials, 30, e327–e330. DOI: 10.1016/j.jmmm.2005.10.112. http://dx.doi.org/10.1016/j.jmmm.2005.10.11210.1016/j.jmmm.2005.10.112Search in Google Scholar

[14] Larcher, D., Sudant, G., Leriche, J. B., Chabre, Y., & Tarascon, J. M. (2002). The electrochemical reduction of Co3O4 in a lithium cell. Journal of the Electrochemical Society, 149, A234–A241. DOI: 10.1149/1.1435358. http://dx.doi.org/10.1149/1.143535810.1149/1.1435358Search in Google Scholar

[15] Liu, J., He, H., Jin, X., Hao, Z., & Hu, Z. (2001). Synthesis of nano-sized nickel ferrites by shock waves and their magnetic properties. Materials Research Bulletin, 36, 2357–2363. DOI: 10.1016/S0025-5408(01)00722-X. http://dx.doi.org/10.1016/S0025-5408(01)00722-X10.1016/S0025-5408(01)00722-XSearch in Google Scholar

[16] Lopez, O. A., McKittrick, J., & Shea, L. E. (1997). Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges. Journal of Luminescence, 71, 1–11. DOI: 10.1016/S0022-2313(96)00123-8. http://dx.doi.org/10.1016/S0022-2313(96)00123-810.1016/S0022-2313(96)00123-8Search in Google Scholar

[17] Meskin, P. E., Ivanov, V. K., Barantchikov, A. E., Churagulov, B. R., & Tretyakov, Y. D. (2006). Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders. Ultrasonics Sonochemistry, 13, 47–53. DOI: 10.1016/j.ultsonch.2004.12.002. http://dx.doi.org/10.1016/j.ultsonch.2004.12.00210.1016/j.ultsonch.2004.12.002Search in Google Scholar

[18] Muyeniki, D. (1954). On the g-value of ferrimagnetic resonance. Science Reports of the Research Institute Tohoku University. Serie A, Physics, Chemistry and Metallurgy, 6, 503–510. Search in Google Scholar

[19] Pielaszek, R. (2003). Analytical expression for diffraction line profile for polydispersive powders. In H. Morawiec, D. Stróź (Eds.), Applied Crystallography, Proceedings of the XIX Conference, 1–4 September 2003 (pp. 43–50). Krakow, Poland: World Scientific Publishing Company. Search in Google Scholar

[20] Polarz, S., Neues, F., van den Berg, M. W. E., Grünert, W., & Khodeir, L. (2005). Mesosynthesis of ZnO-silica composites for methanol nanocatalysis. Journal of the American Chemical Society, 127, 12028–12037. DOI: 10.1021/ja0516514. http://dx.doi.org/10.1021/ja051651410.1021/ja0516514Search in Google Scholar

[21] Prasad, S., & Gajbhiye, N. S. (1998). Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique. Journal of Alloys and Compounds, 265, 87–92. DOI: 10.1016/S0925-8388(97)00431-3. http://dx.doi.org/10.1016/S0925-8388(97)00431-310.1016/S0925-8388(97)00431-3Search in Google Scholar

[22] Ramankutty, C. G., & Sugunan, S. (2001). Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Applied Catalysis A: General, 218, 39–51. DOI: 10.1016/S0926-860X(01)00610-X. http://dx.doi.org/10.1016/S0926-860X(01)00610-X10.1016/S0926-860X(01)00610-XSearch in Google Scholar

[23] Gopal Reddy, C. V. G., Manorama, S. V., & Rao, V. J. (1999). Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sensors and Actuators B: Chemical, 55, 90–95. DOI: 10.1016/S0925-4005(99)00112-4. http://dx.doi.org/10.1016/S0925-4005(99)00112-410.1016/S0925-4005(99)00112-4Search in Google Scholar

[24] Shafi, K. V. P. M., Koltypin, Y., Gedanken, A., Prozorov, R., Balogh, J., Lendvai, J., & Felner, I. (1997). Sonochemical preparation of nano-sized amorphous NiFe2O4 particles. Journal of Physical Chemistry B, 101, 6409–6414. DOI: 10.1021/jp970893q. http://dx.doi.org/10.1021/jp970893q10.1021/jp970893qSearch in Google Scholar

[25] Shi, Y., Ding, J., Liu, X., & Wang, J. (1999). NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying. Journal of Magnetism and Magnetic Materials, 205, 249–254. DOI: 10.1016/S0304-8853(99)00504-1. http://dx.doi.org/10.1016/S0304-8853(99)00504-110.1016/S0304-8853(99)00504-1Search in Google Scholar

[26] Smart, J. S. (1954). Cation distributions in mixed ferrites. Physical Review, 94, 847–850. DOI: 10.1103/PhysRev.94.847. http://dx.doi.org/10.1103/PhysRev.94.84710.1103/PhysRev.94.847Search in Google Scholar

[27] Snieder, J. (1957a). Influence of porosity on the g-factor of ferrites. Applied Scientific Research, 6, 301–311. DOI: 10.1007/BF02410438. http://dx.doi.org/10.1007/BF0241043810.1007/BF02920387Search in Google Scholar

[28] Snieder, J. (1957b). The K 1- and true g-values of polycrystalline ferrites. Applied Scientific Research, 6, 471–473. DOI: 10.1007/BF02410455. http://dx.doi.org/10.1007/BF0241045510.1007/BF02920404Search in Google Scholar

[29] Wejrzanowski, T., Pielaszek, R., Opalińska, A., Matysiak, H., Łojkowski, W., & Kurzydłowski, K. J. (2006). Quantitative methods for nanopowders characterization. Applied Surface Science, 253, 204–210. DOI: 10.1016/j.apsusc.2006.05.089. http://dx.doi.org/10.1016/j.apsusc.2006.05.08910.1016/j.apsusc.2006.05.089Search in Google Scholar

[30] Wu, K. H., Shin, Y. M., Yang, C. C., Wang, G. P., & Horng, D. N. (2006). Preparation and characterization of bamboo charcoal/Ni0.5Zn0.5Fe2O4 composite with coreshell structure. Materials Letters, 60, 2707–2710. DOI: 10.1016/j.matlet.2006.01.075. http://dx.doi.org/10.1016/j.matlet.2006.01.07510.1016/j.matlet.2006.01.075Search in Google Scholar

[31] Yan, C.-H., Xu, Z.-G., Cheng, F.-X, Wang, Z.-M., Sun, L.-D., Liao, C.-S., & Jia, J.-T. (1999). Nanophased CoFe2O4 prepared by combustion method. Solid State Communications, 111, 287–291. DOI: 10.1016/S0038-1098(99)00119-2. http://dx.doi.org/10.1016/S0038-1098(99)00119-210.1016/S0038-1098(99)00119-2Search in Google Scholar

[32] Yang, J. M., Tsuo, W. J., & Yen, F. S. (1999). Preparation of ultrafine nickel ferrite powders using mixed Ni and Fe tartrates. Journal of Solid State Chemistry, 145, 50–57. DOI: 10.1006/jssc.1999.8215. http://dx.doi.org/10.1006/jssc.1999.821510.1006/jssc.1999.8215Search in Google Scholar

[33] Zaki, H. M., & Mansour, S. F. (2006). X-ray and IR analysis of Cu-Si ferrite. Journal of Physics and Chemistry of Solids, 67, 1643–1648. DOI: 10.1016/j.jpcs.2006.02.013. http://dx.doi.org/10.1016/j.jpcs.2006.02.01310.1016/j.jpcs.2006.02.013Search in Google Scholar

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-009-0034-6/html
Scroll to top button