Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 22, 2014

MiR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats

  • Hong Liu EMAIL logo , Ning Zhang and Da Tian

Abstract

Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMC) is a major contributor to the pathogenesis of peritoneal fibrosis. EMT is at least in part caused by repeated exposure to glucose degradation products (GDPs), such as methylglyoxal (MGO). MiRNA contributes greatly to the EMT of PMCs. In this study, we tried to profile whether differences exist between the peritoneal membrane (PM) miRNA expression seen in control rats and that seen in rats injected intraperitoneally with MGO. We assessed whether miR-30b has a possible role in MGO-induced EMT of PMCs in rats. Comparative miRNA expression array and real-time PCR analyses were conducted for the control group at the start of the experiment and for the MGO group after 1 and 2 weeks. During the second week, the MGO rats were treated with: a chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-30b (ASO group); an miR-30b mismatch control sequence (MIS group); or a citrate buffer (EMT group). Bioinformatic analyses indicated that the 3′ untranslated region (3′-UTR) of bone morphogenetic protein 7 (BMP7) mRNA did contain a putative binding site for miR-30b. We also tried to investigate whether miR-30b targeted BMP7 in vitro by transfection. Of the upregulated miRNAs, miR-30b expression demonstrated the greatest increase. The administration of miR-30b ASO for two weeks significantly reduced α-SMA excretion and upregulated E-cadherin and BMP-7 expression. Our in vitro study showed that miR-30b directly targeted and inhibited BMP7 by binding to its 3’-UTR. Our results revealed that miR-30b is involved in MGO-induced EMT of PMCs in rats.

[1] Williams, J.D., Craig, K.J., Topley, N., Von Ruhland, C., Fallon, M., Newman, G.R., Mackenzie, R.K. and Williams, G.T. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13 (2002) 470–479. Search in Google Scholar

[2] Plum, J., Hermann, S., Fusshöller, A., Schoenicke, G., Donner, A., Röhrborn, A. and Grabensee, B. Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney. Int. Suppl 78 (2001) S42–S47. http://dx.doi.org/10.1046/j.1523-1755.2001.07801.x10.1046/j.1523-1755.2001.07801.xSearch in Google Scholar

[3] Kihm, L.P., Wibisono, D., Müller-Krebs, S., Pfisterer, F., Morath, C., Gross, M.L., Morcos, M., Seregin, Y., Bierhaus, A., Nawroth, P.P., Zeier, M. and Schwenger, V. RAGE expression in the human peritoneal membrane. Nephrol. Dial. Transplant. 23 (2008) 3302–3306. http://dx.doi.org/10.1093/ndt/gfn27210.1093/ndt/gfn272Search in Google Scholar

[4] Hirahara, I., Kusano, E., Yanagiba, S., Miyata, Y., Ando, Y., Muto, S. and Asano, Y. Peritoneal injury by methylglyoxal in peritoneal dialysis. Perit. Dial. Int. 26 (2006) 380–392. 10.1177/089686080602600317Search in Google Scholar

[5] Oh, E.J., Ryu, H.M., Choi, S.Y., Yook, J.M., Kim, C.D., Park, S.H., Chung, H.Y., Kim, I.S., Yu, M.A., Kang, D.H. and Kim, Y.L. Impact of low glucose degradation product bicarbonate/lactate-buffered dialysis solution on the epithelial-mesenchymal transition of peritoneum. Am. J. Nephrol. 31 (2010) 58–67. http://dx.doi.org/10.1159/00025665810.1159/000256658Search in Google Scholar

[6] Li, Y., Yang, J., Dai, C., Wu, C. and Liu, Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112 (2003) 503–516. http://dx.doi.org/10.1172/JCI20031791310.1172/JCI200317913Search in Google Scholar

[7] Yáñez-Mó, M., Lara-Pezzi, E., Selgas, R., Ramírez-Huesca, M., Domínguez-Jiménez, C., Jiménez-Heffernan, J.A., Aguilera, A., Sánchez-Tomero, J.A., Bajo, M.A., Alvarez, V., Castro, M.A., del Peso, G., Cirujeda, A., Gamallo, C., Sánchez-Madrid, F. and López-Cabrera, M. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 48 (2003) 403–413. http://dx.doi.org/10.1056/NEJMoa02080910.1056/NEJMoa020809Search in Google Scholar

[8] Yang, A.H., Chen, J.Y. and Lin, J.K. Myofibroblastic conversion of mesothelial cells. Kidney Int. 63 (2003) 1530–1539. http://dx.doi.org/10.1046/j.1523-1755.2003.00861.x10.1046/j.1523-1755.2003.00861.xSearch in Google Scholar

[9] Pillai, R.S., Bhattacharyya, S.N. and Filipowicz, W. Repression of protein synthesis by miRNAs: How many mechanisms? Trends Cell. Biol. 17 (2007) 118–126. http://dx.doi.org/10.1016/j.tcb.2006.12.00710.1016/j.tcb.2006.12.007Search in Google Scholar

[10] Khvorova, A., Reynolds, A. and Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115 (2003) 209–216. http://dx.doi.org/10.1016/S0092-8674(03)00801-810.1016/S0092-8674(03)00801-8Search in Google Scholar

[11] Zhang, K., Zhang, H., Zhou, X., Tang, W.B., Xiao, L., Liu, Y.H., Liu, H., Peng, Y.M., Sun, L. and Liu, F.Y. miRNA589 regulates epithelialmesenchymal transition in human peritoneal mesothelial cells. J. Biomed. Biotechnol. 2012; 2012: 673096. doi: 10.1155/2012/673096. Epub 2012 Oct 3 10.1155/2012/673096Search in Google Scholar PubMed PubMed Central

[12] Tang, O., Chen, X.M., Shen, S., Hahn, M. and Pollock, C.A. miRNA-200b represses transforming growth factor beta1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am. J. Physiol. Renal. Physiol. 304 (2013) F1266–F1273. http://dx.doi.org/10.1152/ajprenal.00302.201210.1152/ajprenal.00302.2012Search in Google Scholar PubMed

[13] Hirahara, I., Ishibashi, Y., Kaname, S., Kusano, E. and Fujita, T. Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats. Nephrol. Dial. Transplant. 24 (2009) 437–447. http://dx.doi.org/10.1093/ndt/gfn49510.1093/ndt/gfn495Search in Google Scholar PubMed

[14] Yang, X., Ye, R., Kong, Q., Yang, Q., Dong, X. and Yu, X. CD40 is expressed on rat peritoneal mesothelial cells and upregulates ICAM-1 production. Nephrol. Dial. Transplant. 19 (2004) 1378–1784. http://dx.doi.org/10.1093/ndt/gfh14410.1093/ndt/gfh144Search in Google Scholar PubMed

[15] Grassmann, A., Gioberge, S., Moeller, S. and Brown G. ESRD patients in 2004: Global overview of patient numbers, treatment modalities and associated trends. Nephrol. Dial. Transplant. 20 (2005) 2587–2593. http://dx.doi.org/10.1093/ndt/gfi15910.1093/ndt/gfi159Search in Google Scholar PubMed

[16] Loureiro, J., Schilte, M., Aguilera, A., Albar-Vizcaíno, P., Ramírez-Huesca, M., Pérez-Lozano, M.L., González-Mateo, G., Aroeira, L.S., Selgas, R., Mendoza, L., Ortiz, A., Ruíz-Ortega, M., van den Born, J., Beelen, R.H. and López-Cabrera, M. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol. Dial. Transplant. 25 (2010) 1098–1108. http://dx.doi.org/10.1093/ndt/gfp61810.1093/ndt/gfp618Search in Google Scholar PubMed

[17] Slaby, O., Svoboda, M., Michalek, J. and Vyzula, R. Micrornas in colorectal cancer: Translation of molecular biology into clinical application. Mol. Cancer 8 (2009) 102. http://dx.doi.org/10.1186/1476-4598-8-10210.1186/1476-4598-8-102Search in Google Scholar PubMed PubMed Central

[18] Acloque, H., Thiery, J.P. and Nieto, M.A. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep. 9 (2008) 322–326. http://dx.doi.org/10.1038/embor.2008.3010.1038/embor.2008.30Search in Google Scholar PubMed PubMed Central

[19] Korpal, M. and Kang, Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5 (2008) 115–119. http://dx.doi.org/10.4161/rna.5.3.655810.4161/rna.5.3.6558Search in Google Scholar PubMed PubMed Central

[20] Long, J., Wang, Y., Wang, W., Chang, B.H. and Danesh, F.R. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286 (2011) 11837–11848. http://dx.doi.org/10.1074/jbc.M110.19496910.1074/jbc.M110.194969Search in Google Scholar PubMed PubMed Central

[21] Gebeshuber, C.A., Kornauth, C., Dong, L., Sierig, R., Seibler, J., Reiss, M., Tauber, S., Bilban, M., Wang, S., Kain, R., Böhmig, G.A., Moeller, M.J., Gröne, H.J., Englert, C., Martinez, J. and Kerjaschki, D. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19 (2013) 481–487. http://dx.doi.org/10.1038/nm.314210.1038/nm.3142Search in Google Scholar PubMed

[22] Kalluri, R. and Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112 (2003) 1776–1784. http://dx.doi.org/10.1172/JCI20032053010.1172/JCI200320530Search in Google Scholar

[23] Wang, S., Chen, Q., Simon, T.C., Strebeck, F., Chaudhary, L., Morrissey, J., Liapis, H., Klahr, S. and Hruska, K.A. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int. 63 (2003) 2037–2049. http://dx.doi.org/10.1046/j.1523-1755.2003.00035.x10.1046/j.1523-1755.2003.00035.xSearch in Google Scholar PubMed

[24] Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D. Strutz, F., and Kalluri, R. BMP-7 counteracts TGF-beta1-induced epithelial-tomesenchymal transition and reverses chronic renal injury. Nat. Med. 9 (2003) 964–968. http://dx.doi.org/10.1038/nm88810.1038/nm888Search in Google Scholar PubMed

[25] Yu, M.A., Shin, K.S., Kim, J.H., Kim, Y.I., Chung, S.S., Park, S.H., Kim, Y.L. and Kang, D.H. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J. Am. Soc. Nephrol. 20 (2009) 567–581. http://dx.doi.org/10.1681/ASN.200804042410.1681/ASN.2008040424Search in Google Scholar PubMed PubMed Central

[26] Margetts, P.J. and Bonniaud, P. Basic mechanisms and clinical implications of peritoneal fibrosis. Perit. Dial. Int. 23 (2003) 530–541. Search in Google Scholar

[27] Zhou, Q., Yang, M., Lan, H. and Yu, X. miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am. J. Pathol. 183 (2013) 808–819. http://dx.doi.org/10.1016/j.ajpath.2013.05.01910.1016/j.ajpath.2013.05.019Search in Google Scholar PubMed

[28] Margetts, P.J., Kolb, M., Galt, T., Hoff, C.M., Shockley, T.R. and Gauldie, J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J. Am. Soc. Nephrol. 12 (2001) 2029–2039. 10.1681/ASN.V12102029Search in Google Scholar PubMed

[29] Vesuna, F., van Diest, P., Chen, J.H. and Raman, V. Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem. Biophys. Res. Commun. 367 (2008) 235–241. http://dx.doi.org/10.1016/j.bbrc.2007.11.15110.1016/j.bbrc.2007.11.151Search in Google Scholar PubMed PubMed Central

[30] Barrallo-Gimeno, A. and Nieto, M.A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132 (2005) 3151–3161. http://dx.doi.org/10.1242/dev.0190710.1242/dev.01907Search in Google Scholar PubMed

Published Online: 2014-6-22
Published in Print: 2014-6-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0199-z/html
Scroll to top button