Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter April 24, 2012

Proprotein convertase subtilisin/kexin type 9: A new target molecule for gene therapy

  • Anna Banaszewska EMAIL logo , Michal Piechota and Robert Plewa

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel target for controlling plasma levels of low-density lipoprotein cholesterol (LDL-C) and decreasing the risk of cardiovascular diseases. At present it is clear that the major classes of commonly prescribed lipid-lowering medications increase serum PCSK9 levels and fail to protect a significant percentage of patients from cardiovascular events. Therefore development of new LDL-C lowering medications that either do not increase circulating PCSK9 levels or work through inhibition of PCSK9 expression and protease activity is a highly desirable approach to overcome hypercholesterolemia. Since there are several agents which are being evaluated in human preclinical and clinical trials, this review summarizes current therapeutic strategies targeting PCSK9, including specific antibodies, antisense oligonucleotides, small interfering RNAs (siRNAs) and other small-molecule inhibitors.

[1] Abifadel, M., Varret, M., Rabès, J.P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., Derré, A., Villéger, L., Farnier, M., Beucler, I., Bruckert, E., Chambaz, J., Chanu, B., Lecerf, J.M., Luc, G., Moulin, P., Weissenbach, J., Prat, A., Krempf, M., Junien, C., Seidah, N.G. and Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34 (2003) 154–156. http://dx.doi.org/10.1038/ng116110.1038/ng1161Search in Google Scholar PubMed

[2] Cohen, J.C., Boerwinkle, E., Mosley, T.H. Jr. and Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 23 (2006) 1264–1272. http://dx.doi.org/10.1056/NEJMoa05401310.1056/NEJMoa054013Search in Google Scholar PubMed

[3] Rashid, S., Curtis, D.E., Garuti, R., Anderson, N.N., Bashmakov, Y., Ho, Y.K., Hammer, R.E., Moon, Y.A. and Horton, J.D. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA 12 (2005) 5374–5379. http://dx.doi.org/10.1073/pnas.050165210210.1073/pnas.0501652102Search in Google Scholar PubMed PubMed Central

[4] Zhao, Z., Tuakli-Wosornu, Y., Lagace, T.A., Kinch, L., Grishin, N.V., Horton, J.D., Cohen, J.C. and Hobbs, H.H. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79 (2006) 514–523. http://dx.doi.org/10.1086/50748810.1086/507488Search in Google Scholar PubMed PubMed Central

[5] Hooper, A.J., Marais, A.D., Tanyanyiwa, D.M. and Burnett, J.R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 193 (2007) 445–448. http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.03910.1016/j.atherosclerosis.2006.08.039Search in Google Scholar PubMed

[6] Cariou, B., Ouguerram, K., Zaïr, Y., Guerois, R., Langhi, C., Kourimate, S., Benoit, I., Le May, C., Gayet, C., Belabbas, K., Dufernez, F., Chétiveaux, M., Tarugi, P., Krempf, M., Benlian, P. and Costet, P. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler. Thromb. Vasc. Biol. 29 (2009) 2191–2197. http://dx.doi.org/10.1161/ATVBAHA.109.19419110.1161/ATVBAHA.109.194191Search in Google Scholar PubMed

[7] Kozłowski, D., Sominka, D., Kogut-Dębska, K. and Raczak, G. Statin use in the treatment of metabolic patient. Geriatria 2 (2008) 231–236. Search in Google Scholar

[8] Dubuc, G., Chamberland, A., Wassef, H., Davignon, J., Seidah, N.G., Bernier, L. and Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24 (2004) 1454–1459. http://dx.doi.org/10.1161/01.ATV.0000134621.14315.4310.1161/01.ATV.0000134621.14315.43Search in Google Scholar PubMed

[9] Careskey, H.E., Davis, R.A., Alborn, W.E., Troutt, J.S., Cao, G. and Konrad, R.J. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J. Lipid Res. 49 (2008) 394–398. http://dx.doi.org/10.1194/jlr.M700437-JLR20010.1194/jlr.M700437-JLR200Search in Google Scholar PubMed

[10] Costet, P., Hoffmann, M.M., Cariou, B., Guyomarc'h Delasalle, B., Konrad, T. and Winkler, K. Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 212 (2010) 246–251. http://dx.doi.org/10.1016/j.atherosclerosis.2010.05.02710.1016/j.atherosclerosis.2010.05.027Search in Google Scholar PubMed

[11] Welder, G., Zineh, I., Pacanowski, M.A., Troutt, J.S., Cao, G. and Konrad, R.J. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J. Lipid Res. 51 (2010). 10.1194/jlr.M008144Search in Google Scholar PubMed PubMed Central

[12] Grundy, S.M., Vega, G.L., Yuan, Z., Battisti, W.P., Brady, W.E. and Palmisano, J. Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial). Am. J. Cardiol. 95 (2005) 462–468. http://dx.doi.org/10.1016/j.amjcard.2004.10.01210.1016/j.amjcard.2004.10.012Search in Google Scholar

[13] Keating, G.M. and Croom K.F. Fenofibrate. A review of its use in primary dyslipidemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs 67 (2007) 121–153. http://dx.doi.org/10.2165/00003495-200767010-0001310.2165/00003495-200767010-00013Search in Google Scholar

[14] Kourimate, S., Le, M.C., Langhi, C., Jarnoux, A.L., Ouguerram, K., Zair, Y., Nguyen, P., Krempf, M., Cariou, B. and Costet, P. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J. Biol. Chem. 283 (2008) 9666–9673. http://dx.doi.org/10.1074/jbc.M70583120010.1074/jbc.M705831200Search in Google Scholar

[15] Lambert, G., Jarnoux, A.L., Pineau, T., Pape, O., Chetiveaux, M., Laboisse, C., Krempf, M. and Costet, P. Fasting induces hyperlipidemia in mice overexpressing PCSK9: Lack of modulation of VLDL hepatic output by the LDLr. Endocrinology 22 (2006) 4985–4995. http://dx.doi.org/10.1210/en.2006-009810.1210/en.2006-0098Search in Google Scholar

[16] Troutt, J.S., Alborn, W.E., Cao, G. and Konrad, R.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J. Lipid Res. 51 (2010) 345–351. http://dx.doi.org/10.1194/jlr.M00062010.1194/jlr.M000620Search in Google Scholar

[17] Lambert G, Ancellin N, Charlton F, Comas, D., Pilot, J., Keech, A., Patel, S., Sullivan, D.R., Cohn, J.S., Rye, K.A. and Barter, P.J. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin. Chem. 54 (2008) 1038–1045. http://dx.doi.org/10.1373/clinchem.2007.09974710.1373/clinchem.2007.099747Search in Google Scholar

[18] Mayne, J., Dewpura, T., Raymond, A., Cousins, M., Chaplin, A., Lahey, K.A., Lahaye, S.A., Mbikay, M., Ooi, T.C. and Chrétien, M. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health. Dis. 11 (2008) 7–22. Search in Google Scholar

[19] Jeu, L. and Cheng, J.W. Pharmacology and therapeutics of ezetimibe (SCH 58235), a cholesterol-absorption inhibitor. Clin. Ther. 25 (2003) 2352–2387. http://dx.doi.org/10.1016/S0149-2918(03)80281-310.1016/S0149-2918(03)80281-3Search in Google Scholar

[20] Dubuc, G., Tremblay, M., Pare, G., Jacques, H., Hamelin, J., Benjannet, S., Boulet, L., Genest, J., Bernier, L., Seidah, N.G. and Davignon, J. A new method for measurement of total plasma PCSK9: clinical applications. J. Lipid Res. 51 (2010) 140–149. http://dx.doi.org/10.1194/jlr.M900273-JLR20010.1194/jlr.M900273-JLR200Search in Google Scholar PubMed PubMed Central

[21] Davignon, J. and Dubuc, G. Statins and ezetimibe modulate plasma proprotein convertase subtilisin kexin-9 (PCSK9) levels. Trans. Am. Clin. Climatol. Assoc. 120 (2009) 163–173. Search in Google Scholar

[22] Ason, B., Tep, S., Davis, H.R. Jr., Xu, Y., Tetzloff, G., Galinski, B., Soriano, F., Dubinina, N., Zhu, L., Stefanni, A., Wong, K.K., Tadin-Strapps, M., Bartz, S.R., Hubbard, B., Ranalletta, M., Sachs, A.B., Flanagan, W.M., Strack, A. and Kuklin, N.A. Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J. Lipid Res. 52 (2011) 679–687. http://dx.doi.org/10.1194/jlr.M01366410.1194/jlr.M013664Search in Google Scholar PubMed PubMed Central

[23] Gouni-Berthold, I., Berthold, H.K., Gylling, H., Hallikainen, M., Giannakidou, E., Stier, S., Ko, Y., Patel, D., Soutar, A.K., Seedorf, U., Mantzoros, C.S., Plat, J. and Krone, W. Effects of ezetimibe and/or simvastatin on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase gene expression: a randomized trial in healthy men. Atherosclerosis 198 (2008) 198–207. http://dx.doi.org/10.1016/j.atherosclerosis.2007.09.03410.1016/j.atherosclerosis.2007.09.034Search in Google Scholar PubMed

[24] Kong, W., Wei, J., Abidi, P., Lin, M., Inaba, S., Li, C., Wang, Y., Wang, Z., Si, S., Pan, H., Wang, S., Wu, J., Wang, Y., Li, Z., Liu, J. and Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 10 (2004) 1344–1351. http://dx.doi.org/10.1038/nm113510.1038/nm1135Search in Google Scholar PubMed

[25] Cameron, J., Ranheim, T., Kulseth, M.A., Leren, T.P. and Berge, K.E. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis 201 (2008) 266–273. http://dx.doi.org/10.1016/j.atherosclerosis.2008.02.00410.1016/j.atherosclerosis.2008.02.004Search in Google Scholar PubMed

[26] Li, H., Dong, B., Park, S.W., Lee, H.S., Chen, W. and Liu, J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 284 (2009) 28885–28895. http://dx.doi.org/10.1074/jbc.M109.05240710.1074/jbc.M109.052407Search in Google Scholar PubMed PubMed Central

[27] Shan, L., Pang, L., Zhang, R., Murgolo, N.J., Lan, H. and Hedrick, J.A. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem. Biophys. Res. Commun. 10 (2008) 69–73. http://dx.doi.org/10.1016/j.bbrc.2008.07.10610.1016/j.bbrc.2008.07.106Search in Google Scholar PubMed

[28] Ni, Y.G., Di Marco, S., Condra J.H., Peterson, L.B., Wang, W., Wang, F., Pandit, S., Hammond, H.A., Rosa, R., Cummings, R.T., Wood, D.D., Liu, X., Bottomley, M.J., Shen, X., Cubbon, R.M., Wang, S.P., Johns, D.G., Volpari, C., Hamuro, L., Chin, J., Huang, L., Zhao, J.Z., Vitelli, S., Haytko, P., Wisniewski, D., Mitnaul, L.J., Sparrow, C.P., Hubbard, B., Carfí, A. and Sitlani, A. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res. 52 (2011) 78–86. http://dx.doi.org/10.1194/jlr.M01144510.1194/jlr.M011445Search in Google Scholar PubMed PubMed Central

[29] Chan, J.C., Piper, D.E., Cao, Q., Liu, D., King, C., Wang, W., Tang, J., Liu, Q., Higbee, J., Xia, Z., Di, Y., Shetterly, S., Arimura, Z., Salomonis, H., Romanow, W.G., Thibault, S.T., Zhang, R., Cao, P., Yang, X.P., Yu, T., Lu, M., Retter, M.W., Kwon, G., Henne, K., Pan, O., Tsai, M.M., Fuchslocher, B., Yang, E., Zhou, L., Lee, K.J., Daris, M., Sheng, J., Wang, Y., Shen, W.D., Yeh, W.C., Emery, M., Walker, N.P., Shan, B., Schwarz, M. and Jackson, S.M. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci. USA 16 (2009) 9820–9825. http://dx.doi.org/10.1073/pnas.090384910610.1073/pnas.0903849106Search in Google Scholar PubMed PubMed Central

[30] Information obtained from the web page: http://clinicaltrials.gov/ct2/show/NCT01375751?term=amg+145+phase+2&rank=3 Search in Google Scholar

[31] Information obtained from the web page http://clinicaltrials.gov/ct2/show/NCT01163851?term=RN316&rank=2 Search in Google Scholar

[32] Citi Investment Research Global Healthcare Conference, New York 2010. Search in Google Scholar

[33] Information obtained from the web page http://clinicaltrials.gov/ct2/show/NCT01266876?term=REGN727+phase+2&rank=3 Search in Google Scholar

[34] Graham, M.J., Lemonidis, K.M., Whipple, C.P., Subramaniam, A., Monia, B.P., Crooke, S.T. and Crooke, R.M. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res. 48 (2007) 763–767. http://dx.doi.org/10.1194/jlr.C600025-JLR20010.1194/jlr.C600025-JLR200Search in Google Scholar PubMed

[35] Gupta, N., Fisker, N., Asselin, M.C., Lindholm, M., Rosenbohm, C., Ørum, H., Elmén, J., Seidah, N.G. and Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 17 (2010) e10682. DOI: 10.1371/journal.pone.0010682. http://dx.doi.org/10.1371/journal.pone.001068210.1371/journal.pone.0010682Search in Google Scholar PubMed PubMed Central

[36] PCSK9 Conference, Locked Nucleic Acid antisense oligonucleotide inhibition of PCSK9, March 11, 2010. Information obtained from the web page http://www.santaris.com/news/2011/05/04/santaris-pharma-advancesnew-cholesterol-lowering-drug-spc5001-inhibiting-exciting-n Search in Google Scholar

[37] Information obtained from the web page http://clinicaltrials.gov/ct2/show/NCT01350960?term=SPC5001&rank=1 Search in Google Scholar

[38] Dykxhoorn, D.M., Novina, C.D. and Sharp, P.A. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell. Biol. 4 (2003) 457–467. http://dx.doi.org/10.1038/nrm112910.1038/nrm1129Search in Google Scholar PubMed

[39] Frank-Kamenetsky, M., Grefhorst, A., Anderson, N.N., Racie, T.S., Bramlage, B., Akinc, A., Butler, D., Charisse, K., Dorkin, R., Fan, Y., Gamba-Vitalo, C., Hadwiger, P., Jayaraman, M., John, M., Jayaprakash, K.N., Maier, M., Nechev, L., Rajeev, K.G., Read, T., Röhl, I., Soutschek, J., Tan, P., Wong, J., Wang, G., Zimmermann, T., de Fougerolles, A., Vornlocher, HP., Langer, R., Anderson, D.G., Manoharan, M., Koteliansky, V., Horton, J.D. and Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA 19 (2008) 11915–119120. http://dx.doi.org/10.1073/pnas.080543410510.1073/pnas.0805434105Search in Google Scholar PubMed PubMed Central

[40] RNAi for Target Validation and as a Therapeutic, Keystone Symposium, Colorado 2007. Search in Google Scholar

Published Online: 2012-4-24
Published in Print: 2012-6-1

© 2012 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-012-0006-7/html
Scroll to top button