Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 21, 2009

The immunogenicity of the liposome-associated outer membrane proteins (OMPs) of Moraxella catarrhalis

  • Daria Augustyniak EMAIL logo , Józef Mleczko and Jan Gutowicz

Abstract

The outer membrane proteins (OMPs) are the most immunogenic and attractive of the Moraxella catarrhalis vaccine antigens that may induce the protective immune response. The aim of this study was to determine the effectiveness of two types of OMP-associated phosphatidylcholine (PC) liposomal formulations (OMPs-PC, PC-OMPs) and of Zwittergent-based proteomicelles (OMPs-Z) in potentiating an anti-OMP systemic immune response in mice. The immunogenicities of the above preparations were evaluated by assessing serum anti-OMP IgG and IgA reactivity in the post-immunized mouse antisera using ELISA and Western blotting. Additionally, the cross-reactivity of the most effective anti-OMP response was determined using heterologous sera from both humans and mice. Both the proteoliposomes and the proteomicelles showed high immunogenic properties and did not elicit any distinct quantitative differences in the antibody titer or qualitative differences in the pattern of the mouse antisera. The post-immunized mouse antisera predominantly recognized a ∼60-kDa OMP of M. catarrhalis. That protein was also found to be a highly cross-reactive antigen interacting with a panel of pooled mouse antisera produced by immunization either with whole cells or the purified OMPs of heterologous M. catarrhalis strains. Furthermore, normal sera collected from healthy children were found to be preferentially reactive with the 60-kDa OMP. The serum-specific IgG, IgA and IgM were respectively detected via immunoblotting in 90%, 85% and 30% of heterologous human sera. This similar immunogenic effectiveness of both OMP-associated liposomal formulations could contribute to the practical use of such formulations in the future in human vaccination. Moreover, the highly cross-reactive 60-kDa OMP seems to be an important antigenic marker of M. catarrhalis, and, as it is responsible for the induction of an antibody-mediated and long-lasting immune response, studying it may partially aid us in understanding the relatively low degree of pathogenicity of the bacterium in immunocompetent individuals.

[1] Karaulus, R. and Campagnari, A. Moraxella catarrhalis: a review of an important human mucosal pathogen. Microb. Infect. 2 (2000) 547–559. http://dx.doi.org/10.1016/S1286-4579(00)00314-210.1016/S1286-4579(00)00314-2Search in Google Scholar

[2] Murphy, T.F., Brauer, A.L., Aebi, Ch. and Sethi, S. Identification of surface antigens of Moraxella catarrhalis as targets of human serum antibody responses in chronic obstructive pulmonary disease. Infect. Immun. 73 (2005) 3471–3478. http://dx.doi.org/10.1128/IAI.73.6.3471-3478.200510.1128/IAI.73.6.3471-3478.2005Search in Google Scholar PubMed PubMed Central

[3] Murphy, T.F., Brauer, A.L., Grant, B.J. and Sethi, S. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am. J. Respir. Crit. Care. Med. 172 (2005) 195–199. http://dx.doi.org/10.1164/rccm.200412-1747OC10.1164/rccm.200412-1747OCSearch in Google Scholar PubMed PubMed Central

[4] Sethi, S., Sethi, R., Eschberger, K., Lobbins, P., Cai, X., Grant, B.J. and Murphy, T.F. Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 176 (2007) 356–361. http://dx.doi.org/10.1164/rccm.200703-417OC10.1164/rccm.200703-417OCSearch in Google Scholar PubMed

[5] Verduin, C.M. Hol, C. Fleer, A. van Dijk, H. and van Belkum, A. Moraxella catarrhalis: from emerging to established pathogen. Clin. Microb. Rev. 15 (2002) 125–144. http://dx.doi.org/10.1128/CMR.15.1.125-144.200210.1128/CMR.15.1.125-144.2002Search in Google Scholar PubMed PubMed Central

[6] Bandak, S.M., Turnak, M.R., Allen, B.S., Bolzon, L.D., Preston, D.A., Bouchillon, S.K. and Hoban, D.J. Antibiotic susceptibility among recent clinical isolates of Haemophilus influenza and Moraxella catarrhalis from fifteen countries. Eur. J. Clin. Microbiol. Infect. Dis. 20 (2001) 55–60. http://dx.doi.org/10.1007/s10096000042710.1007/s100960000427Search in Google Scholar

[7] Klingman, K.L., Pye, A., Murphy, T.F. and Hill, S.L. Dynamics of respiratory tract colonization by Branhamella catarrhalis in bronchiectasis. Am. J. Respir. Crit. Care. Med. 152 (1995) 1072–1078. Search in Google Scholar

[8] Faden, H., Duffy, L., Wasielewski, R., Wolf, J., Krystofik, D. and Tung, Y. Relationship between nasopharyngeal colonization and the development of otitis media in children. J. Infect. Dis. 175 (1997) 1440–1445. http://dx.doi.org/10.1086/51647710.1086/516477Search in Google Scholar PubMed

[9] Yokota, S., Harimaya, A., Sato, K., Somekawa, Y., Himi, T. and Fujii, N. Colonization and turnover of Streptococcus pneumonia, Haemophilus influenzae, and Moraxella catarrhalis in otitis-prone children. Microbiol. Immunol. 51 (2007) 223–230. 10.1111/j.1348-0421.2007.tb03904.xSearch in Google Scholar PubMed

[10] Heiniger, N., Spaniol, V., Troller, R., Vischer, M. and Aebi, C. A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. J. Infect. Dis. 196 (2007) 1080–1087. http://dx.doi.org/10.1086/52119410.1086/521194Search in Google Scholar PubMed

[11] Peng, D., Hong, W., Choudhury, B., Carlson, R.W. and Gu, X.X. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect. Immun. 73 (2005) 7569–7577. http://dx.doi.org/10.1128/IAI.73.11.7569-7577.200510.1128/IAI.73.11.7569-7577.2005Search in Google Scholar PubMed PubMed Central

[12] Troncoso, G., Sánchez, S., Criado, M.T. and Ferreirós, C. Analysis of Moraxella catarrhalis outer membrane antigens cross-reactive with Neisseria meningitidis and Neisseria lactamica. FEMS Immunol. Med. Microbiol. 40 (2004) 89–94. http://dx.doi.org/10.1016/S0928-8244(03)00298-010.1016/S0928-8244(03)00298-0Search in Google Scholar

[13] Mleczko, J., Augustyniak, D. and Jankowski, A. Efficiency of oral immunization of mice with Candida albicans and Moraxella catarrhalis heat-killed cells and cross reactivity of induced antibodies. Centr. Eur. J. Immunol. 32 (2007) 185–188. Search in Google Scholar

[14] Steeghs, L., Kuipers, B., Hamstra, H.J., Kersten, G., Van Alphen, L. and Van der Ley, P. Immunogenicity of outer membrane proteins in a lipopolysaccharide —deficient mutant of Neisseria meningitidis: influence of adjuvants on the immune response. Infect. Immun. 67 (1999) 4988–4993. 10.1128/IAI.67.10.4988-4993.1999Search in Google Scholar

[15] Schweizer, M., Hindennach, I., Garten, W. and Henning, U. Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II* with lipopolysaccharide. Eur. J. Biochem. 82 (1978) 211–217. http://dx.doi.org/10.1111/j.1432-1033.1978.tb12013.x10.1111/j.1432-1033.1978.tb12013.xSearch in Google Scholar

[16] Bogdanov, M. and Dowhan, W. Lipid-assisted protein folding. J. Biol. Chem. 274 (1999) 36827–36830. http://dx.doi.org/10.1074/jbc.274.52.3682710.1074/jbc.274.52.36827Search in Google Scholar

[17] Qi, H.L., Tai, J.Y. and Blake, M.S. Expression of large amounts of neisserial porin proteins in Escherichia coli and refolding of the proteins into native trimers. Infect. Immun. 62 (1994) 2432–2439. Search in Google Scholar

[18] Wetzler, L.M., Blake, M.S. and Gotschlich, E.C. Characterization and specificity of antibodies to protein I of Neisseria gonorrhoeae produced by injection with various protein I-adjuvant preparation. J. Exp. Med. 168 (1988) 1883–1897. http://dx.doi.org/10.1084/jem.168.5.188310.1084/jem.168.5.1883Search in Google Scholar

[19] Jolley, K.A., Appleby, L., Wright, J.C., Christodoulides, M. and Heckels, J. Immunization with recombinant Opc outer membrane protein from Neisseria meningitidis: Influence of sequence variation and levels of expression on the bactericidal immune response against meningococci. Infect. Immun. 69 (2001) 3809–3916. http://dx.doi.org/10.1128/IAI.69.6.3809-3816.200110.1128/IAI.69.6.3809-3816.2001Search in Google Scholar

[20] Frézard, F. Liposomes: from biophysics to the design of peptide vaccines. Braz. J. Med. Biol. Res. 32 (1999)181–189. http://dx.doi.org/10.1590/S0100-879X199900020000610.1590/S0100-879X1999000200006Search in Google Scholar

[21] Altin, J.G. and Parish, Ch.R. Liposomal vaccines-targeting the delivery of antigen. Methods 40 (2006) 39–52. http://dx.doi.org/10.1016/j.ymeth.2006.05.02710.1016/j.ymeth.2006.05.027Search in Google Scholar

[22] Uchida, T. and Taneichi, M. Clinical application of surface-linked liposomal antigens. Mini Rev. Med. Chem. 8 (2008) 184–192. http://dx.doi.org/10.2174/13895570878349814010.2174/138955708783498140Search in Google Scholar

[23] Parmar, M.M., Edwards, K. and Madden, T.D. Incorporation of bacterial membrane proteins into liposomes: factors influencing protein reconstitution. Biochim. Biophys. Acta 1421 (1999) 77–90. http://dx.doi.org/10.1016/S0005-2736(99)00118-210.1016/S0005-2736(99)00118-2Search in Google Scholar

[24] Stebelska, K., Wyrozumska, P., Gubernator, J. and Sikorski A.F. Highly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells. Cell. Mol. Biol. Lett. 12 (2007) 35–39. http://dx.doi.org/10.2478/s11658-006-0049-810.2478/s11658-006-0049-8Search in Google Scholar

[25] Gutowicz, J. and Terlecki, G. The association of glycolytic enzymes with cellular and model membranes. Cell. Mol. Biol. Lett. 8 (2003) 667–680. Search in Google Scholar

[26] Murphy, T.F. and Bartos, L.C. Surface-exposed and antigenically conserved determinants of outer membrane proteins of Branhamella catarrhalis. Infect. Immun. 57 (1989) 2938–2941. Search in Google Scholar

[27] Rigaud, J-L. and Lévy, D. Reconstitution of membrane proteins into liposomes. in: Methods in Enzymol. Liposomes, Part B. 372 Elsevier Academic Press, Co. Elseviere Inc., 2003,65–86. http://dx.doi.org/10.1016/S0076-6879(03)72004-710.1016/S0076-6879(03)72004-7Search in Google Scholar

[28] Rigaud, J.L., Paternoster, M.T. and Bluza, A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents.2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27 (1988) 2677–2688. http://dx.doi.org/10.1021/bi00408a00710.1021/bi00408a007Search in Google Scholar

[29] Sarwar, J., Campagnari, A.A., Kirkham, C. and Murphy, T. Characterization of an antigenically conserved heat-modifiable major outer membrane protein of Branhamella catarrhalis. Infect. Immun. 60 (1992) 804–809. Search in Google Scholar

[30] Mandrell, R.E. and Zollinger, W.D. Use of a zwitterionic detergent for the restoration of the antibody-binding capacity of electroblotted meningococcal outer membrane proteins. J. Immunol. Met. 67 (1984) 1–11. http://dx.doi.org/10.1016/0022-1759(84)90080-210.1016/0022-1759(84)90080-2Search in Google Scholar

[31] Idänpään-Heikkilä, I., Wahlström, E., Muttilainen, S., Nurminen, M., Käyhty, H., Sarvas, M. and Mäkelä, P.H. Immunization with meningococcal class 1 outer membrane protein produced in Bacillus subtilis and reconstituted in the presence of Zwittergent or Triton X-100. Vaccine 14 (1996) 886–891. http://dx.doi.org/10.1016/0264-410X(95)00263-Z10.1016/0264-410X(95)00263-ZSearch in Google Scholar

[32] Shahum, E. and Thérien, H.M. Effect of liposomal antigens on the priming and activation of the immune system by dendritic cells. Int. Immunopharmacol. 2 (2002) 591–601. http://dx.doi.org/10.1016/S1567-5769(02)00004-810.1016/S1567-5769(02)00004-8Search in Google Scholar

[33] Ignatius, R., Mahnke, K., Rivera, M., Hong, K., Isdell, F., Steinman, R.M., Pope, M. and Stamatatos, L. Presentation of proteins encapsulated in sterically stabilized lioposomes by dendritic cells initiates CD8(+) T-cell response in vivo. Blood 96 (2000) 3505–3513. Search in Google Scholar

[34] Alving, C.R. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim. Biophys. Acta 1113 (1992) 307–322. Search in Google Scholar

[35] Wright, J.C., Wiliams, J.N., Christodoulides, M. and Haeckels, J.E. Immunization with the recombinant PorB membrane prorein induces bactericidal immune response against Neisseria meningitidis. Infect. Immune. 70 (2002) 4028–4034. http://dx.doi.org/10.1128/IAI.70.8.4028-4034.200210.1128/IAI.70.8.4028-4034.2002Search in Google Scholar PubMed PubMed Central

[36] Sprott, G.D., Dicaire, C.J., Gurnani, K., Deschatelets, L.A. and Krishnan, L. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine 22 (2004) 2154–2162. http://dx.doi.org/10.1016/j.vaccine.2003.11.05410.1016/j.vaccine.2003.11.054Search in Google Scholar PubMed

[37] Witkowska, D., Masłowska, E., Staniszewska, M., Szosto, B., Jankowski, A. and Gamian, A. Enterobacterial 38-kDa outer membrane protein is an age-dependent molecular marker of innate immunity and immunoglobulin deficiency as results from its reactivity with IgG and IgA antibody. FEMS Immunol. Med. Microbiol. 48 (2006) 205–214. http://dx.doi.org/10.1111/j.1574-695X.2006.00137.x10.1111/j.1574-695X.2006.00137.xSearch in Google Scholar PubMed

[38] Christiensen, J.J. Moraxella (Branhamella) catarrhalis: clinical, microbiological and immunological features in lower respiratory tract infections. APMIS 107S (1999) 1–36. Search in Google Scholar

[39] Mathers, K., Leinonen, M. and Goldblatt, D. Anibody response to outer membrane proteins of Moraxella catarrhalis in children with otitis media. Pediatr. Infect. Dis. J. 18 (1999) 982–988. http://dx.doi.org/10.1097/00006454-199911000-0001010.1097/00006454-199911000-00010Search in Google Scholar PubMed

[40] Murphy, T.F., Kirkham, C., Liu, D.F. and Sethi, S. Human immune response to outer membrane protein CD of Moraxella catarrhalis in adults with chronic obstructive pulmonary disease. Infect. Immun. 71 (2003) 1288–1294. http://dx.doi.org/10.1128/IAI.71.3.1288-1294.200310.1128/IAI.71.3.1288-1294.2003Search in Google Scholar

[41] Murphy, T.F., Kirkham, C. and Lesse, A.J. The major heat modifiable outer membrane protein CD is highly conserved among strains of Branhamella catarrhalis. Mol. Microbiol. 10 (1993) 87–97. http://dx.doi.org/10.1111/j.1365-2958.1993.tb00906.x10.1111/j.1365-2958.1993.tb00906.xSearch in Google Scholar

[42] Hsiao, C.B., Sethi, S. and Murphy, T.F. Outer membrane protein CD of Branhamella catarrhalis: sequence conservation in strains recovered from the human respiratory tract. Microb. Pathog. 19 (1995) 215–225. http://dx.doi.org/10.1016/S0882-4010(95)90272-410.1016/S0882-4010(95)90272-4Search in Google Scholar

[43] McMichael, J. Vaccines for Moraxella catarrhalis. Vaccine 19 (2001) 101–107. http://dx.doi.org/10.1016/S0264-410X(00)00287-510.1016/S0264-410X(00)00287-5Search in Google Scholar

[44] Yang-Ping, Y., Myers, L.E., McGuinnes, U., Chong, P., Kwok, Y., Klein, M.H. and Harkness, R.E. The major outer membrane protein, CD, extracted from Moraxella (Branhamella) catarrhalis is a potential vaccine antigen that induces bactericidal antibodies. FEMS Immunol. Med. Microbiol. 17 (1997) 187–199. http://dx.doi.org/10.1111/j.1574-695X.1997.tb01012.x10.1111/j.1574-695X.1997.tb01012.xSearch in Google Scholar PubMed

[45] Meier, P.S., Freiburghaus, S., Martin, A., Heiniger, N., Troller, R. and Aebi, C. Mucosal immune response to specific outer membrane proteins of Moraxella catarrhalis in young children. Pediatr. Infect. Dis. J. 22 (2003) 256–262. http://dx.doi.org/10.1097/00006454-200303000-0001110.1097/00006454-200303000-00011Search in Google Scholar

[46] Meier, P.S., Heiniger, N., Troller, R. and Aebi, C. Salivary antibodies directed against outer membrane proteins of Moraxella catarrhalis in healthy adults. Infect. Immun. 71 (2003) 6793–6798. http://dx.doi.org/10.1128/IAI.71.12.6793-6798.200310.1128/IAI.71.12.6793-6798.2003Search in Google Scholar PubMed PubMed Central

[47] Holm, M.M., Vanlerberg, S.L., Foley, I.M., Sledjeski, D.D. and Lafontaine, E.R. The Moraxella catarrhalis porin-like outer membrane protein CD is an adhesion for human lung cells. Infect. Immun. 72 (2004)1906–1913. http://dx.doi.org/10.1128/IAI.72.4.1906-1913.200410.1128/IAI.72.4.1906-1913.2004Search in Google Scholar PubMed PubMed Central

[48] Liu, D.F., McMichael, J.C. and Baker, S.M. Moraxella catarrhalis outer membrane protein CD elicits antibodies that inhibit CD binding to human mucin and enhance pulmonary clearance of M.catarrhalis in a mouse model. Infect. Immun. 75 (2007) 2818–2825. http://dx.doi.org/10.1128/IAI.00074-0710.1128/IAI.00074-07Search in Google Scholar PubMed PubMed Central

[49] Hu, W.G., Berry, J., Chen, J. and Gum, X-X. Exploration of Moraxella catarrhalis outer membrane proteins, CD and UspA, as new carriers for lipooligosaccharide-based conjugates. FEMS Immunol. Med. Microbiol. 41 (2004)109–115. http://dx.doi.org/10.1016/j.femsim.2004.02.00110.1016/j.femsim.2004.02.001Search in Google Scholar PubMed

Published Online: 2009-12-21
Published in Print: 2010-3-1

© 2009 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-009-0035-z/html
Scroll to top button