Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 7, 2010

Changes in gingival blood flow during orthodontic treatment

  • Adrienn Barta EMAIL logo , Gábor Nagy , Zoltán Csiki , Sándor Márton and Melinda Madléna
From the journal Open Medicine

Abstract

The aim of the study was to investigate the changes in gingival blood flow due to orthodontic forces. Eleven volunteers, with the maxillary canine in an ectopic position were tested. A Laser Doppler Flowmeter (LDF) with a gingival probe was used, registering both the blood flow and temperature of the gingivae. After baseline measurement, a fixed orthodontic appliance was bonded. Measurements were repeated monthly, after activation of the appliance. The study lasted 6 months. The baseline value was 338.7 ± 201.56 P.U. [Perfusion Unit (mean ± S.D.)] which decreased to 218.9 ± 74.83 P.U. (p < 0.05) after two months and the final value of 363.9 ± 194.86 P.U was not significantly different from that initially (p > 0.5). The results showed that application of a force of 75 g resulted in a decrease in gingival blood flow up to 50%, but this returned to previous values after a few months. The study supports this measurement technique as a useful tool for monitoring gingival blood flow in long-term studies as well.

[1] Schwarz A. Tissue changes incident to orthodontic tooth movement, Int J Orthod, 1932, 18, 331–352 10.1016/S0099-6963(32)80074-8Search in Google Scholar

[2] Hertrich K., Raab W.H. Reactive changes in the periodontal microcirculation under orthodontic forces, Fortschr Kieferorthop, 1990, 5, 253–258 http://dx.doi.org/10.1007/BF0216892510.1007/BF02168925Search in Google Scholar

[3] Tanne K., Sakuda M., Burstone C.J. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces, Am J Orthod Dentofacial Orthop, 1987, 92, 499–505 http://dx.doi.org/10.1016/0889-5406(87)90232-010.1016/0889-5406(87)90232-0Search in Google Scholar

[4] Yamaguchi K., Nanda R.S., Kawata T. Effect of orthodontic forces on blood flow in human gingiva, Angle Orthod, 1991, 61, 193–204 Search in Google Scholar

[5] Deguchi T, Imai M, Sugawara Y, Ando R, Kushima K, Takano-Yamamoto T. Clinical evaluation of a low-friction attachment device during canine retraction, Angle Orthod, 2007, 77, 968–972 http://dx.doi.org/10.2319/102706-443.110.2319/102706-443.1Search in Google Scholar

[6] Forsslund G. The structure and function of the capillary system in the gingiva in man, Acta Odontol Scand, 1959, 17, 1–144 Search in Google Scholar

[7] Hock J., Nuki K. A vital microscopy study of the morphology of normal and inflamed gingiva, J Periodontal Res, 1971, 6, 81–88 http://dx.doi.org/10.1111/j.1600-0765.1971.tb00592.x10.1111/j.1600-0765.1971.tb00592.xSearch in Google Scholar

[8] Hock J., Nuki K. Erythrocyte velocity in vascular networks of young noninflamed dog gingiva, J Dent Res, 1976, 55, 1058–1060 10.1177/00220345760550060801Search in Google Scholar

[9] Kaplan M., Davis M., Goldhaber P. Blood flow measurements in selected oral tissues in dogs using radiolabelled microspheres and rubidium-86, Arch Oral Biol, 1978, 23, 281–284 http://dx.doi.org/10.1016/0003-9969(78)90019-510.1016/0003-9969(78)90019-5Search in Google Scholar

[10] Hock J., Nuki K., Schlenker R. Hawks A. Clearance rates of xenon-113 in non-inflamed and inflamed gingiva of dogs, Arch Oral Biol, 1980, 25, 445–449 http://dx.doi.org/10.1016/0003-9969(80)90050-310.1016/0003-9969(80)90050-3Search in Google Scholar

[11] Kinnen E., Goldberg H.J. The application of electrical impedance plethysmography to the study of gingival circulation, J Periodontol, 1978, 49, 528–533 10.1902/jop.1978.49.10.528Search in Google Scholar PubMed

[12] Bishop J.G., Dorman H.L. Control of blood circulation in oral tissue, Adv Oral Biol, 1968, 3, 1–44 10.1016/B978-1-4832-3119-8.50008-1Search in Google Scholar PubMed

[13] Ingolfsson A.R., Tronstad L., Hersh E.V., Riva C.E. Efficacy of laser Doppler flowmetry in determining pulp vitality of human teeth, Endod Dent Traumatol, 1994, 10, 83–87 http://dx.doi.org/10.1111/j.1600-9657.1994.tb00065.x10.1111/j.1600-9657.1994.tb00065.xSearch in Google Scholar

[14] Musselwhite J.M., Klitzman B., Maixner W. Burkes EJ Jr. Laser Doppler flowmetry: a clinical test of pulpal vitality, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1997, 84, 411–419 http://dx.doi.org/10.1016/S1079-2104(97)90041-X10.1016/S1079-2104(97)90041-XSearch in Google Scholar

[15] Sasano T., Kuriwada S., Sanjo D. Arterial blood pressure regulation of pulpal blood flow as determined by laser Doppler, J Dent Res, 1989, 68, 791–795 10.1177/00220345890680050701Search in Google Scholar

[16] Staple P., Copley A. Observations on the microcirculation in the gingiva of hamsters and other laboratory animals, Circ Res, 1959, 7, 243–249 10.1161/01.RES.7.2.243Search in Google Scholar

[17] Watson A., Pitt Ford T., McDonald F. Blood flow changes in the dental pulp during limited exercise measured by laser Doppler flowmetry, Int Endod J, 1992, 25, 82–87 http://dx.doi.org/10.1111/j.1365-2591.1992.tb00740.x10.1111/j.1365-2591.1992.tb00740.xSearch in Google Scholar

[18] Gazelius B., Olgart L., Edwall B. Restored vitality in luxated teeth assessed by laser Doppler flowmeter, Endod Dent Traumatol, 1988, 4, 265–268 http://dx.doi.org/10.1111/j.1600-9657.1988.tb00645.x10.1111/j.1600-9657.1988.tb00645.xSearch in Google Scholar

[19] De Rijk W., Bowen P., Bonner R. Preliminary results with Laser Doppler Velocimetry (LDV) in gingival tissues, IADR Progr & Abst, 1980, 59:325–325 Search in Google Scholar

[20] Holloway G.A. Jr, Watkins D.W. Laser Doppler measurement of cutaneous blood flow, J Invest Dermatol, 1977, 69, 306–309 http://dx.doi.org/10.1111/1523-1747.ep1250766510.1111/1523-1747.ep12507665Search in Google Scholar

[21] Emshoff R., Moschen I., Strobl H. Adverse outcomes of dental trauma splinting as related to displacement injury and pulpal blood flow level, Dental Traumatol, 2008, 24, 32–37 http://dx.doi.org/10.1111/j.1600-9657.2006.00494.x10.1111/j.1600-9657.2006.00494.xSearch in Google Scholar

[22] Fratkin R.D., Kenny D.J., Johnston D.H. Evaluation of a laser Doppler flowmeter to assess blood flow in human primary incisor teeth, Pediatr Dent, 1999, 21, 53–56. Search in Google Scholar

[23] Gaengler P., Merte K. Effects of force application on periodontal blood circulation. A vital microscopic study in rats, J Periodontal Res, 1983, 18, 86–92 http://dx.doi.org/10.1111/j.1600-0765.1983.tb00339.x10.1111/j.1600-0765.1983.tb00339.xSearch in Google Scholar

[24] Ishikawa H., Nakamura S., Misaki K. Kudoh M., Fukuda H., Yoshida S. Scar tissue distribution on palates and its relation to maxillary dental arch form, Cleft Palate Craniofac J, 1998, 35, 313–319 http://dx.doi.org/10.1597/1545-1569(1998)035<0313:STDOPA>2.3.CO;210.1597/1545-1569(1998)035<0313:STDOPA>2.3.CO;2Search in Google Scholar

[25] Vag J., Fazekas A. Influence of restorative manipulations on the blood perfusion of human marginal gingiva as measured by laser Doppler flowmetry, J Oral Rehabil, 2002, 29, 52–57 http://dx.doi.org/10.1046/j.1365-2842.2002.00818.x10.1046/j.1365-2842.2002.00818.xSearch in Google Scholar

[26] Firestone A.R., Wheatley A.M., Thüer U.W. Measurement of blood perfusion in the dental pulp with laser Doppler flowmetry, Int J Microcirc Clin Exp, 1997, 17, 298–304 http://dx.doi.org/10.1159/00017924410.1159/000179244Search in Google Scholar

[27] McDonald F., Pitt Ford T.R. Blood flow changes in permanent maxillary canines during retraction, Eur J Orthod, 1994, 16, 1–9 10.1093/ejo/16.1.1Search in Google Scholar

[28] Ikawa M., Fujiwara M., Horiuchi H. Shimauchi H. The effect of short-term tooth intrusion on human pulpal blood flow measured by laser Doppler flowmetry, Arch Oral Biol, 2001, 46, 781–787 http://dx.doi.org/10.1016/S0003-9969(01)00049-810.1016/S0003-9969(01)00049-8Search in Google Scholar

[29] Sano Y., Ikawa M., Sugawara J. Horiuchi H, Mitani H. The effect of continuous intrusive force on human pulpal blood flow, Eur J Orthod, 2002, 24, 159–166 http://dx.doi.org/10.1093/ejo/24.2.15910.1093/ejo/24.2.159Search in Google Scholar PubMed

[30] Sasano T., Kuriwada S., Sanjo D. Izumi H, Tabata T, Karita K. Acute response of periodontal ligament blood flow to external force application, J Periodontal Res, 1992, 27, 301–304 http://dx.doi.org/10.1111/j.1600-0765.1992.tb01682.x10.1111/j.1600-0765.1992.tb01682.xSearch in Google Scholar PubMed

[31] Wise G.E., King G.J. Mechanisms of tooth eruption and orthodontic tooth movement, J Dent Res, 2008, 87, 414–434 http://dx.doi.org/10.1177/15440591080870050910.1177/154405910808700509Search in Google Scholar PubMed PubMed Central

[32] Dolce C., Malone J.S., Wheeler T.T. Current concepts in the biology of orthodontic tooth movement, Seminars Orthod, 2002, 8, 6–12 http://dx.doi.org/10.1053/sodo.2002.2816510.1053/sodo.2002.28165Search in Google Scholar

[33] Henneman S., von den Hoff J.W., Maltha J.C. Mechanobiology of tooth movement, Eur J Orthod, 2008, 30, 299–306 http://dx.doi.org/10.1093/ejo/cjn02010.1093/ejo/cjn020Search in Google Scholar PubMed

[34] Davidovitch Z. Tooth movement, Crit Rev Oral Biol Med, 1991, 2, 411–450 10.1177/10454411910020040101Search in Google Scholar PubMed

[35] Yamaguchi K., Nanda R.S. Blood flow changes in gingival tissues due to the displacement of teeth, Angle Orthod, 1992, 62, 257–264 Search in Google Scholar

[36] Sasano T., Shoji N., Kuriwada S. Sanjo D. Calibration of laser Doppler flowmetry for measurement of gingival blood flow, J Periodontal Res, 1995, 30, 298–301 http://dx.doi.org/10.1111/j.1600-0765.1995.tb02138.x10.1111/j.1600-0765.1995.tb02138.xSearch in Google Scholar

[37] Brodin P., Linge L., Aars H. Instant assessment of pulpal blood flow after orthodontic force application, J Orofac Orthop, 1996, 57, 306–309 http://dx.doi.org/10.1007/BF0219755110.1007/BF02197551Search in Google Scholar

[38] Dannan A., Darwish M.A., Sawan M.N. The effect of orthodontic extrusion movements upon the gingival tissues. The Orthodontic CYBERjournal, 2008 http://www.oc-j.com/Jan08/gingiva.htm Accessed 20 Aug 2008 Search in Google Scholar

[39] Konno Y., Daimaruya T., Iikubo M., Kanzaki R., Takahashi I., Sugawara J., Sasano T. Morphologic and hemodynamic analysis of dental pulp in dogs after molar intrusion with the skeletal anchorage system, Am J Orthod Dentofacial Orthop, 2007, 132, 199–207 http://dx.doi.org/10.1016/j.ajodo.2005.07.02910.1016/j.ajodo.2005.07.029Search in Google Scholar

[40] Gleissner C., Kempski O., Peylo S. Glatzel J.H., Willershausen B. Local gingival blood flow at healthy and inflamed sites measured by laser Doppler flowmetry, J Periodontol, 2006, 77, 1762–1771 http://dx.doi.org/10.1902/jop.2006.05019410.1902/jop.2006.050194Search in Google Scholar

[41] Krishnan V., Ambili R., Davidovitch Z. Murphy N.C. Gingiva and orthodontic treatment, Seminars Orthod, 2007, 13, 257–271 http://dx.doi.org/10.1053/j.sodo.2007.08.00710.1053/j.sodo.2007.08.007Search in Google Scholar

[42] Sasano T, Shoji N, Kuriwada-Satoh S, Iikubo M, Izumi H, Karita K. Dependence of pulpal blood-flow responses on baseline blood-flow in the cat, Arch Oral Biol, 2002, 47, 131–137 http://dx.doi.org/10.1016/S0003-9969(01)00095-410.1016/S0003-9969(01)00095-4Search in Google Scholar

[43] Hoke J.A., Burkes E.J., White J.T. Duffy M.B., Klitzman B. Blood-flow mapping of oral tissues by laser Doppler flowmetry, Int J Oral Maxillofac Surg, 1994, 23, 312–315 http://dx.doi.org/10.1016/S0901-5027(05)80117-110.1016/S0901-5027(05)80117-1Search in Google Scholar

[44] Atkins S.E., Tuncay O.C. Gingival blood flow, Miss Dent Assoc J, 1993, 49, 27–29 Search in Google Scholar

Published Online: 2010-10-7
Published in Print: 2010-12-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11536-010-0043-4/html
Scroll to top button