Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 17, 2014

Biological activity of microalgae can be enhanced by manipulating the cultivation temperature and irradiance

  • Gergana Gacheva EMAIL logo and Liliana Gigova
From the journal Open Life Sciences

Abstract

The escalating levels of antibiotic resistance among pathogenic bacteria and the side effects of chemotherapeutic drugs in use forced the efforts of scientists to search for natural antimicrobial and anticancer substances with novel structures and unique mechanism of action. Focusing on bioproducts, recent trends in drug research have shown that microalgae (including the cyanobacteria) are promising organisms to furnish novel and safer biologically active compounds. Many microalgal metabolites have been found to possess potent antibacterial, antifungal, antiviral, anticancer and antiinflammatory activities, as well as antioxidant, enzyme inhibiting and immunostimulating properties. In this paper, the studies on the biological activity of microalgae associated with potential medical and pharmaceutical applications are briefly presented. Attention is focused on the impact of cultivation temperature, irradiance and growth stage on the biomass accumulation, activity and pathways of cell metabolism and the possibilities of using these variable factors to increase the diversity and quantity of biologically active substances synthesized by microalgae.

[1] Falkowski P.G., Raven J.A., Aquatic Photosynthesis, Blackwell Science, Oxford, 1997 Search in Google Scholar

[2] Al-Wathnani H., Johansen J.R., Cyanobacteria in soils from a Mojave desert ecosystem, Monographs Western North American Naturalist, 2011, 5, 71–89 10.3398/042.005.0103Search in Google Scholar

[3] Cardozo K.H.M., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., et al., Metabolites from algae with economical impact, Comp. Biochem. Physiol. C, 2007, 146, 60–78 10.1016/j.cbpc.2006.05.007Search in Google Scholar PubMed

[4] Borowitzka M., High-value products from microalgae — their development and commercialisation, J. Appl. Phycol., 2013, 25, 743–756 10.1007/s10811-013-9983-9Search in Google Scholar

[5] Abd El Baky H.H., El-Baroty G.S., Healthy Benefit of Microalgal Bioactive Substances, J. Aquat. Sci., 2013, 1, 11–23 Search in Google Scholar

[6] Pratt R., Daniels T.C., Eiler J.B, Gunnison J.B., Kumler W.D., Oneto J.F., et al., Chlorellin, an antibacterial substance from Chlorella, Science, 1944, 99, 351–352 10.1126/science.99.2574.351Search in Google Scholar PubMed

[7] Jaki B., Orjala J., Heilmann J., Linden A., Vogler B., Sticher O., Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune, J. Nat. Prod., 2000, 63, 339–343 10.1021/np9903090Search in Google Scholar PubMed

[8] Volk R.B., Girreser U., Al-Refai M., Laatsch H., Bromoanaindolone, a novel antimicrobial alkaloid from the cyanobacterium Anabaena constricta, Nat. Prod. Res., 2009, 23, 607–612 10.1080/14786410802114068Search in Google Scholar PubMed

[9] Jaki B., Zerbe O., Heilmann J., Sticher O., Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195), J. Nat. Prod., 2001, 64, 154–158 10.1021/np000297eSearch in Google Scholar PubMed

[10] Ghasemi Y., Tabatabaei Yazdi M., Shafiee A., Amini M., Shokravi Sh., Zarrini G., Parsiguine, a novel antimicrobial substance from Fischerella ambigua, Pharm. Biol., 2004, 2, 318–322 10.1080/13880200490511918Search in Google Scholar

[11] Silva-Stenico M.E., Silva C.S.P., Lorenzia A.S., Shishido T.K., Etchegaray A., Lira S.P., et al., Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity, Microbiol. Res., 2011, 166, 161–175 10.1016/j.micres.2010.04.002Search in Google Scholar PubMed

[12] Plaza M., Santoyo S., Jaime L., García-Blairsy Reina G., Herrero M., Señoráns F.J., et al., Screening for bioactive compounds from algae, J. Pharm. Biomed. Anal., 2010, 51, 450–455 10.1016/j.jpba.2009.03.016Search in Google Scholar PubMed

[13] Najdenski H., Gigova L., Iliev I., Pilarski P., Lukavský J., Tsvetkova I., et al., Antibacterial and antifungal activity of selected microalgae and cyanobacteria, Int. J. Food Sci. Technol., 2013, 48, 1533–1540 10.1111/ijfs.12122Search in Google Scholar

[14] Sarada D., Kumar S.C., Rengasamy R., Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria, World J. Microbiol. Biotechnol., 2011, 27, 779–783 10.1007/s11274-010-0516-2Search in Google Scholar

[15] Murugan T., Radhamadhavan, Screening for antifungal and antiviral activity of C-phycocyanin from Spirulina platensis, J. Pharm. Res., 2011, 4, 4161–4163 Search in Google Scholar

[16] Roy K.R., Arunasree K.M., Reddy N.P., Dheeraj B., Reddy G.V., Reddanna P., Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicin-resistant human hepatocellularcarcinoma cell line HepG2, Biotechnol. Appl. Biochem., 2007, 47, 159–167 10.1042/BA20060206Search in Google Scholar PubMed

[17] Chung S., Jeong J.Y., Choi D.E., Na K.R., Lee K.W., Shin Y.T., C-phycocyanin attenuates renal inflammation and fibrosis in UUO Mice, Korean J. Nephrol., 2010, 29, 687–694 Search in Google Scholar

[18] Ou Y., Lin L., Yang X., Pan Q., Cheng X., Antidiabetic potential of phycocyanin: Effects on KKAy mice, Pharm. Biol., 2013, 51, 539–544 10.3109/13880209.2012.747545Search in Google Scholar PubMed

[19] Bhat V.B., Madyastha K.M., C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro, Biochem. Biophys. Res. Commun., 2000, 275, 20–25 10.1006/bbrc.2000.3270Search in Google Scholar PubMed

[20] Gigova L., Toshkova R., Gardeva E., Gacheva G., Ivanova N., Yossifova L., et al., Growth inhibitory activity of selected microalgae and cyanobacteria towards human cervical carcinoma cells (HeLa), J. Pharm. Res., 2011, 4, 4702–4707 Search in Google Scholar

[21] Kanekiyo K., Hayashi K., Takenaka H., Lee J.B., Hayashi T., Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme, Biol. Pharm. Bull., 2007, 30, 1573–1575 10.1248/bpb.30.1573Search in Google Scholar PubMed

[22] Sato Y., Okuyama S., Hori K., Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii, J. Biol. Chem., 2007, 282, 11021–11029 10.1074/jbc.M701252200Search in Google Scholar PubMed

[23] Teneva I., Stoyanov P., Mladenov R., Dzhambazov B., In vitro and in vivo toxicity evaluation of the freshwater cyanobacterium Heteroleiblenia kuetzingii, Cent. Eur. J. Biol., 2013, 8, 1216–1229 10.2478/s11535-013-0239-0Search in Google Scholar

[24] Tan L.T., Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery, J. Appl. Phycol., 2010, 22, 659–676 10.1007/s10811-010-9506-xSearch in Google Scholar

[25] Uzair B., Tabassum S., Rasheed M., Rehman S.F., Exploring marine cyanobacteria for lead compounds of pharmaceutical importance, ScientificWorldJournal, 2012, DOI: 10.1100/2012/179782 10.1100/2012/179782Search in Google Scholar PubMed PubMed Central

[26] Hong J., Luesch H., Largazole: from discovery to broad-spectrum therapy, Nat. Prod. Rep., 2012, 29, 449–456 10.1039/c2np00066kSearch in Google Scholar

[27] El Semary N.A., Ghazi S.M., Abd El Nabi M.M., Investigating the taxonomy and bioactivity of an Egyptian Chlorococcum isolate, Austr. J. Basic Appl. Sci., 2009, 3, 1540–1551 Search in Google Scholar

[28] Bhagavathy S., Sumathi P., Jancy Sherene Bell I., Green alga Chlorococcum humicola — a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed., 2011, S1–S7 10.1016/S2221-1691(11)60111-1Search in Google Scholar

[29] Ördög V., Stirk W.A., Lenobel R., Bancířová M., Strnad M., van Staden J., et al., Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites, J. Appl. Phycol., 2004, 16, 309–314 10.1023/B:JAPH.0000047789.34883.aaSearch in Google Scholar

[30] Santoyo S., Jaime L., Plaza M., Herrero M., Rodriguez-Meizoso I., Ibañez E., et al., Antiviral compounds obtained from microalgae commonly used as carotenoid sources, J. Appl. Phycol., 2012, 24, 731–741 10.1007/s10811-011-9692-1Search in Google Scholar

[31] Palozza P., Torelli C., Boninsegna A., Simone R., Catalano A., Mele M.C., et al., Growthinhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells, Cancer Lett., 2009, 283, 108–117 10.1016/j.canlet.2009.03.031Search in Google Scholar

[32] Cha K.H., Koo S.Y., Lee D-Un, Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells, J. Agric. Food Chem., 2008, 56, 10521–10526 10.1021/jf802111xSearch in Google Scholar

[33] Pasquet V., Morisset P., Ihammouine S., Chepied A., Aumailley L., Berard J-B., et al., Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tetriolecta extracts, Mar. Drugs, 2011, 9, 819–831 10.3390/md9050819Search in Google Scholar

[34] Hasegawa T., Noda K., Kumamoto S., Ando Y., Yamada A., Yoshikai Y., Chlorella vulgaris culture supernatant (CVS) reduces psychological stressinduced apoptosis in thymocytes of mice, Int. J. Immunopharmacol., 2000, 22, 877–885 10.1016/S0192-0561(00)00049-7Search in Google Scholar

[35] Park J.K., Kim Z-H., Lee C.G., Sanytsya A., Jo H.S., Kim S.O., et al., Characterization and immunostimulating activity of a water soluble polysaccharide isolated from Haematococcus lacustris, Biotechnol. Bioprocess Eng., 2011, 16, 1090–1098 10.1007/s12257-011-0173-9Search in Google Scholar

[36] Talyshinsky M.M., Souprun Y.Y., Huleihel M.M., Anti-viral activity of red microalgal polysaccharide against retroviruses, Cancer Cell Int., 2002, 2, 8 10.1186/1475-2867-2-8Search in Google Scholar PubMed PubMed Central

[37] Gardeva E., Toshkova R., Yossifova L., Minkova K., Gigova L., Monitoring the cytotoxic and apoptogenic potential of red microalgal polysaccharides, Biotechnol. Biotechnol. Equip., 2012, 26, 3167–3172 10.5504/BBEQ.2012.0035Search in Google Scholar

[38] Huang J., Liu L., Yu Y., Lin W., Chen B., Li M., Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in experimental diabetic mice, J. Fujian Normal Univ., 2006, 22, 77–80 Search in Google Scholar

[39] Matsui M.S., Muizzuddin N., Arad S., Marenus K., Sulfated polysaccharide from red microalgae have anti-inflammatory properties in vitro and in vivo, Appl. Biochem. Biotechnol., 2003, 104, 13–22 10.1385/ABAB:104:1:13Search in Google Scholar

[40] Chen B., You W., Huang J., Yu Y., Chen W., Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata, World J. Microbiol. Biotechnol., 2010, 26, 833–840 10.1007/s11274-009-0240-ySearch in Google Scholar

[41] Minkova K.M., Toshkova R.A., Gardeva E.G., Tchorbadjieva M.I., Ivanova N.J., Yossifova L.S., et al., Antitumor activity of B-phycoerythrin from Porphyridium cruentum, J. Pharm. Res., 2011, 4, 1480–1482 Search in Google Scholar

[42] Wen R., Sui Z., Zhang X., Zhang S., Qin S., Expression of the phycoerythrin gene of Gracilaria lemaneiformis (Rhodophyta) in E. coli and evaluation of the bioactivity of recombinant PE, J. Ocean Univ. China, 2007, 6, 373–377 10.1007/s11802-007-0373-2Search in Google Scholar

[43] Desbois A.P., Lebl T., Yan L., Smith V.J., Isolation and structural characterization of two antibacterial free fatty acids from the marine diatom Phaeodactylum tricornutun, Appl. Microbiol. Biotechnol., 2008, 81, 755–764 10.1007/s00253-008-1714-9Search in Google Scholar

[44] Desbois A.P., Meams-Spragg A., Smith V.J., A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA), Mar. Biotechnol., 2009, 11, 45–52 10.1007/s10126-008-9118-5Search in Google Scholar

[45] Al-Mola H.F., Antibacterial activity of crude extracts and phlorotannin isolated from the diatom Cymbella spp., J. Pharm. Res., 2009, 2, 304–308 Search in Google Scholar

[46] Carbonnelle D., Pondaven P., Masse M.M., Bosch, G., Jacquot S., et al., Antitumor and antiproliferative effects of an aqueous extract from the marine diatom Haslea ostrearia (Simonsen) against solid tumors: lung carcinoma (NSCLC-N6), kidney carcinoma (E39) and melanoma (M96) cell lines, Anticancer Res., 1999, 19, 621–624 Search in Google Scholar

[47] Gastineau R., Pouvreau J.B., Hellio C., Morançais M., Fleurence J., Gaudin P., et al., Biological activities of purified marennine, the blue pigment responsible for the greening of oysters, J. Agric. Food Chem., 2012, 60, 3599–3605 10.1021/jf205004xSearch in Google Scholar

[48] Prestegard S.K., Oftedal L., Coyne R.T., Nygaard G., Skjærven K.H., Knutsen G., et al., Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity, Mar. Drugs, 2009, 7, 605–623 10.3390/md7040605Search in Google Scholar

[49] Lee J.B., Hayashi K., Hirata M., Kuroda E., Suzuki E., Kubo Y., et al., Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay, Biol. Pharm. Bull. 2006, 29, 2135–2139 10.1248/bpb.29.2135Search in Google Scholar

[50] Moore R.E., Cyclic peptides and depsipeptides from cyanobacteria: a review, J. Ind. Microbiol., 1996, 16, 134–143 10.1007/BF01570074Search in Google Scholar

[51] Guschina I.A., Harwood J.L., Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 2006, 45, 160–186 10.1016/j.plipres.2006.01.001Search in Google Scholar

[52] Los D.A., Suzuki I., Zinchenko V.V., Murata N., Stress responses in Synechocystis: regulated genes and regulatory systems, In: Herrero A., Flores E. (Eds.), Cyanobacteria: molecular biology, genomics, and evolution, Horizon Scientific Press, Norfolk, 2008 Search in Google Scholar

[53] Richmond A., Cell response to environmental factors, In: Richmond A. (Ed.), Handbook of microalgal mass culture, CRC Press, Boca Raton, Florida, 1986 Search in Google Scholar

[54] DeNicola D.M., Periphyton responses to temperature at different ecological levels, In: Stevenson R.J., Bothwell M.L., Lowe R.L. (Eds.), Algal Ecology: Freshwater Benthic Ecosystems, Academic Press, New York, 1996 Search in Google Scholar

[55] Wada H., Murata N., Temperature-induced changes in the fatty acid composition of the cyanobacterium Synechocystis PCC6803, Plant Physiol., 1990, 92, 1062–1069 10.1104/pp.92.4.1062Search in Google Scholar

[56] Iliev I., Petkov G., Furnadzieva S., Andreeva R., Lukavsky J., Membrane metabolites of Arthronema africanum strains from extreme habitats, Gen. Appl. Plant Physiol., 2006, 32, 117–123 Search in Google Scholar

[57] Downs C.A., McDougall K.E., Woodley C.M., Fauth J.E., Richmond R.H., Kushmaro A., et al., Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching, PLoS ONE, 2013, 8(12): e77173, DOI:10.1371 10.1371/journal.pone.0077173Search in Google Scholar

[58] Glatz A., Vass I., Los D.A., Vigh L., The Synechocystis model of stress: from molecular chaperones to membranes, Plant Physiol. Biochem., 1999, 37, 1–12 l, lmre Vass 2, Dmitry 10.1016/S0981-9428(99)80061-8Search in Google Scholar

[59] Rowland J.G., Pang X., Suzuki I., Murata N., Simon W.J., Slabas A.R., Identification of components associated with thermal acclimation of photosystem II in Synechocystis sp. PCC6803, PLoS ONE, 2010, 5(5): e10511, DOI:10.1371, Lfiszl6 Vig 10.1371/journal.pone.0010511Search in Google Scholar PubMed PubMed Central

[60] Davison I.R., Environmental effects on algal photosynthesis: temperature, J. Phycol., 1991, 27, 2–8 10.1111/j.0022-3646.1991.00002.xSearch in Google Scholar

[61] Janssen M., Bathke L., Marquardt J., Krumbein W.E., Rhiel E., Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities, Int. Microbiol., 2001, 4, 27–33 10.1007/s101230100005Search in Google Scholar PubMed

[62] Dubinsky Z., Matsukawa R., Karube I., Photobiological aspects of algal mass culture, Mar. Biolechnol., 1995, 2, 61–65 Search in Google Scholar

[63] Carvalho A.P., Monteiro C.M., Malcata F.X., Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri, J. Appl. Phycol., 2009, 21, 543–552 10.1007/s10811-009-9415-zSearch in Google Scholar

[64] Prasad S.M., Dubey G., Growth, pigments and photosynthetic responses of two cyanobacteria adapted to varying light intensities, Plant Arch., 2011, 11, 621–629 Search in Google Scholar

[65] Schagerl M., Müller B., Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria, J. Plant Physiol., 2006, 163, 709–716 10.1016/j.jplph.2005.09.015Search in Google Scholar PubMed

[66] Rabbani S., Beyer P., Lintig J., Hugueney P., Kleinig H., Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil, Plant Physiol., 1998, 116, 1239–1248 10.1104/pp.116.4.1239Search in Google Scholar PubMed PubMed Central

[67] Sandnes J.M., Kallqvist T., Wenner D., Gislerød H.R., Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production, J. Appl. Phycol., 2005, 17, 515–525 10.1007/s10811-005-9002-xSearch in Google Scholar

[68] Trabelsi L., Quada H.B., Bacha H., Ghoul M., Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis, J. Appl. Phycol., 2009, 21, 405–412 10.1007/s10811-008-9383-8Search in Google Scholar

[69] Gigova L., Gacheva G., Ivanova N., Pilarski P., Effects of temperature on Synechocystis sp. R10 (Cyanoprokaryota) at two irradiance levels. I. Effect on growth, biochemical composition and defense enzyme activities, Genetics Plant Physiol., 2012, 2, 24–37 Search in Google Scholar

[70] Juneja A., Ceballos R.M., Murthy G.S., Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review, Energies, 2013, 6, 4607–4638 10.3390/en6094607Search in Google Scholar

[71] Sivonen K., Effects of light, temperature, nitrate, orthophosphate and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains, Appl. Environ. Microbiol., 1990, 56, 2658–2666 10.1128/aem.56.9.2658-2666.1990Search in Google Scholar PubMed PubMed Central

[72] Pavlova V., Furnadzhieva S., Rose J., Andreeva R., Bratanova Zl., Nayak A., Effect of temperature and light intensity on the growth, chlorophyll a concentration and microcystin production by Microcystis aeruginosa, Gen. Appl. Plant Physiol., 2010, 36, 148–158 Search in Google Scholar

[73] Noaman N., Fattah A., Khaleafa M., Zaky S.H., Factors affecting antimicrobial activity of Synechococcus leopoliensis, Microbiol. Res., 2004, 159, 395–402 10.1016/j.micres.2004.09.001Search in Google Scholar PubMed

[74] Radhakrishnan B., Prasanna R., Jaiswal P., Nayak S., Dureja P., Modulation of biocidal activity of Calothrix sp. and Anabaena sp. by environmental factors, Biologia, 2009, 64, 881–889 10.2478/s11756-009-0169-5Search in Google Scholar

[75] Chaudhary V., Prasanna R., Bhatnagar A.K., Modulation of fungicidal potential of Anabaena strains by light and temperature, Folia Microbiol., 2012, 57, 199–208 10.1007/s12223-012-0114-9Search in Google Scholar PubMed

[76] Lehtimäki J., Sivonen K., Luukkainen R., Niemelä S.I., The effects of incubation time, temperature, light, salinity and phosphorous on growth and hepatotoxin production by Nodularia strains, Arch. Hydrobiol., 1994, 130, 269–282 10.1127/archiv-hydrobiol/130/1994/269Search in Google Scholar

[77] Watanabe M.F., Oishi S., Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions, Appl. Environ. Microbiol., 1985, 49, 1342–1344 10.1128/aem.49.5.1342-1344.1985Search in Google Scholar PubMed PubMed Central

[78] Hifney A.F., Issa A.A., Fawzy M.A., Abiotic stress induced production of ß-carotene, allophycocyanin and total lipids in Spirulina sp., J. Biol. Earth Sci., 2013, 3, B54–B64 Search in Google Scholar

[79] Saker M.L., Griffiths D.J., The effect of temperature on growth and cylindrospermopsin content of seven isolates of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju from water bodies in northern Australia, Phycologia, 2000, 39, 349–354 10.2216/i0031-8884-39-4-349.1Search in Google Scholar

[80] Issa A.A., Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina, Environ. Toxicol. Pharmacol., 1999, 8, 33–37 10.1016/S1382-6689(99)00027-7Search in Google Scholar

[81] Gacheva G., Gigova L., Ivanova N., Pilarski P., Lukavský J., Suboptimal growth temperatures enhance the biological activity of cultured cyanobacterium Gloeocapsa sp., J. Appl. Phycol., 2013, 25, 183–194 10.1007/s10811-012-9852-ySearch in Google Scholar

[82] Fish S.A., Codd G.A., Bioactive compound production by thermophilic and termotolerant cyanobacteria (blue-green algae), World J. Microbiol. Biotechnol., 1994, 10, 338–341 10.1007/BF00414875Search in Google Scholar PubMed

[83] Houssen W.E., Koehnke J., Zollman D., Vendome J., Raab A., Smith M.C.M., et al., The discovery of new cyanobactins from Cyanothece PCC 7425 defines a new signature for processing of patellamides, ChemBioChem., 2012, 13, 2683–2689 10.1002/cbic.201200661Search in Google Scholar PubMed

[84] Repka S., Koivula M., Harjunpä V., Rouhiainen L., Sivonen K., Effects of phosphate and light on growth of and bioactive peptide production by the cyanobacterium Anabaena strain 90 and its anabaenopeptilide mutant, Appl. Environ. Microbiol., 2004, 70, 4551–4560 10.1128/AEM.70.8.4551-4560.2004Search in Google Scholar PubMed PubMed Central

[85] Kurmayer R., The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions, J. Phycol., 2011, 47, 200–207 10.1111/j.1529-8817.2010.00931.xSearch in Google Scholar PubMed PubMed Central

[86] Gigova L., Gacheva G., Toshkova R., Yossifova, L., Gardeva E., Ivanova N., et al., Effects of temperature on Synechocystis sp. R10 at two irradiance levels. II. Effect on antibacterial, antifungal and cytotoxic activities, Genetics Plant Physiol., 2012, 2, 38–49 Search in Google Scholar

[87] Chetsumon A., Umeda F., Maeda I., Yagi, K., Mizoguchi T., Miura Y., Broad spectrum and mode of action of an antibiotic produced by Scytonema sp. TISTR 8208 in a seaweed-type bioreactor, Appl. Biochem. Biotechnol., 1998, 70–72, 249–256 10.1007/BF02920141Search in Google Scholar PubMed

[88] Kumar M., Kulshreshtha J., Singh G.P., Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature, Braz. J. Microbiol., 2011, 42, 1128–1135 10.1590/S1517-83822011000300034Search in Google Scholar

[89] Hobson P., Fallowfield H.J., Effect of irradiance, temperature and salinity on growth and toxin production by Nodularia spumigena, Hydrobiol., 2003, 493, 7–15 Search in Google Scholar

[90] Rapala J., Sivonen K., Lyra C., Niemelä S.I., Variations of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli, Appl. Environ. Microbiol., 1997, 63, 2206–2212 10.1128/aem.63.6.2206-2212.1997Search in Google Scholar PubMed PubMed Central

[91] Srivastava V.C., Inhibitory metabolites production by the cyanobacterium Fischerella muscicola, PhD thesis, Massey University, Massey, New Zealand, 1996 Search in Google Scholar

[92] Gupta V., Prasanna R., Cameotra S.S., Dureja P., Singh R.N., Sharma J., Enhancing the production of an antifungal compound from Anabaena laxa through modulation of environmental conditions and its characterization, Process Biochem., 2013, 48, 768–774 10.1016/j.procbio.2013.04.002Search in Google Scholar

[93] Volk R.B., Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc insulare, J. Appl. Phycol., 2007, 19, 491–495 10.1007/s10811-007-9161-zSearch in Google Scholar

[94] Chakraborty T., Sen A.K., Pal R., Chemical characterization and the stress induced changes of the extracellular polysaccharide of the marine cyanobacterium, Phormidium tenue, J, Algal Biomass Utln., 2012, 3, 11–20 Search in Google Scholar

[95] Karseno, Harada K., Bamba T., Dwi S., Mahakhant A., Yoshikawa T., Hirata K., Extracellular phycoerythrin-like protein released by freshwater cyanobacteria Oscillatoria and Scytonema sp., Biotechnol. Lett., 2009, 31, 999–1003 10.1007/s10529-009-9964-xSearch in Google Scholar

[96] Leão P.N., Pereira A.R., Liu W-T., Ng J., Pevzner P.A., Dorrestein P.C., et al., Synergistic allelochemicals from a freshwater cyanobacterium, Proc. Natl. Acad. Sci. USA, 2010, 107, 11183–11188 10.1073/pnas.0914343107Search in Google Scholar

[97] Rohrlack T., Utkilen H., Effects of nutrient and light availability on production of bioactive anabaenopeptins and microviridin by the cyanobacterium Planktothrix agardhii, Hydrobiol., 2007, 583, 231–240 10.1007/s10750-006-0536-ySearch in Google Scholar

[98] Velea S., Ilie L., Filipescu L., Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate, UPB Sci, Bull. B, 2011, 73, 81–94 Search in Google Scholar

[99] Sarada R., Tripathi U., Ravishankar G.A., Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions, Process Biochem., 2002, 37, 623–627 10.1016/S0032-9592(01)00246-1Search in Google Scholar

[100] Boussiba S., Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response, Physiol. Plant., 2000, 108, 111–117 10.1034/j.1399-3054.2000.108002111.xSearch in Google Scholar

[101] Abu-Rezq T.S., Al-Hooti S., Jacob D., Al-Shamali M., Ahmed A., Ahmed N., Induction and extraction of β-carotene from the locally isolated Dunaliella salina, J. Algal Biomass Utln., 2010, 1, 58–83 Search in Google Scholar

[102] Mendoza H, Del Río M.J., García Reina G., Ramazanov Z., Low-temperature-induced β-carotene and fatty acid synthesis, and ultrastructural reorganization of the chloroplast in Dunaliella salina (Chlorophyta), Eur. J. Phycol., 1996, 31, 329–331 10.1080/09670269600651551Search in Google Scholar

[103] Del Campo J.A., Moreno J., Rodríguez H., Vargas M.A., Rivas J., Guerrero M.G., Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta), J. Biotechnol., 2000, 76, 51–59 10.1016/S0168-1656(99)00178-9Search in Google Scholar

[104] Sánchez J.F., Fernández J.M., Acién F.G., Rueda A., Pérez-Parra J., Molina E., Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis, Process Biochem., 2008, 43, 398–405 10.1016/j.procbio.2008.01.004Search in Google Scholar

[105] Del Campo J.A., Rodríguez H., Moreno J., Vargas M.A., Rivas J., Guerrero M.G., Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta), Appl. Microbiol. Biotechnol., 2004, 64, 848–854 10.1007/s00253-003-1510-5Search in Google Scholar PubMed

[106] Razaghi A., Godhe A., Albers E., Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum, Cent. Eur. J. Biol., 2014, 9, 156–162 10.2478/s11535-013-0248-zSearch in Google Scholar

[107] Cheng-Wu Z., Cohen Z., Khozin-Goldberg I., Richmond A., Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta), J. Appl. Phycol., 2002, 14, 453–460 Search in Google Scholar

[108] Solovchenko A.E., Khozin-Goldberg I., Didi-Cohen S., Cohen Z., Merzlyak M.N., Effects of light intensities and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa, J. Appl. Phycol., 2008, 20, 245–251 10.1007/s10811-007-9233-0Search in Google Scholar

[109] Solovchenko A., Khozin-Goldberg I., Didi-Cohen S., Cohen Z., Merzlyak M.N., Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa, Russ. J. Plant Physiol., 2008, 55, 455–462 10.1134/S1021443708040043Search in Google Scholar

[110] Brown M.R., Dunstan G.A., Norwood S.J., Miller K.A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, J. Phycol., 1996, 32, 64–73 10.1111/j.0022-3646.1996.00064.xSearch in Google Scholar

[111] Cepák V., Přibyl P., Kohoutková J., Kaštánek P., Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus, J. Appl. Phycol., 2014, 26, 181–190 10.1007/s10811-013-0119-zSearch in Google Scholar

[112] Yongmanitchai W., Ward O.P., Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions, Appl. Environ. Microbiol., 1991, 57, 419–425 10.1128/aem.57.2.419-425.1991Search in Google Scholar

[113] Jiang H., Gao K., Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae), J. Phycol., 2004, 40, 651–654 10.1111/j.1529-8817.2004.03112.xSearch in Google Scholar

[114] Tatsuzawa H., Takizawa E., Changes in lipid and fatty acid composition of Pavlova lutheri, Phytochemistry, 1995, 40, 397–400 10.1016/0031-9422(95)00327-4Search in Google Scholar

[115] Zhu C., Lee Y., Chao T., Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana tk1, J. Appl. Phycol., 1997, 9, 451–457 Search in Google Scholar

[116] Durmaz Y., Monteiro M., Bandarra N., Gökpinar Ş., Işik O., The effect of low temperature on fatty acid composition and tocopherols of the red microalga, Porphyridium cruentum, J. Appl. Phycol., 2007, 19, 223–227 10.1007/s10811-006-9127-6Search in Google Scholar

[117] Fidalgo J.P., Cid A., Torres E., Sukenik A., Herrero C., Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana, Aquaculture, 1998, 166, 105–116 10.1016/S0044-8486(98)00278-6Search in Google Scholar

[118] Petkov G.D., Klyachko-Gurvich G.L., Furnadzhieva S.T., Andreeva R., Bratanova Zl., Nayak A., Genotypic differences and phenotypic changes of lipid fatty acid composition in strains of Dunaliella salina, Sov. Plant Physiol., 1990, 37, 268–272 Search in Google Scholar

[119] Hodgson P.A., Henderson R.J., Sargent J.R., Leftley J.W., Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture: I. The growth cycle, J. Appl. Phycol., 1991, 3, 169–181 10.1007/BF00003699Search in Google Scholar

[120] Liang Y., Mai K., Effect of growth phase on the fatty acid compositions of four species of marine diatoms, J. Ocean Uni. China, 2005, 4, 157–162 10.1007/s11802-005-0010-xSearch in Google Scholar

[121] Durmaz Y., Vitamin E (α-tocopherol) production by the marine microalga Nanochloropsis oculata (Eustigmatophyceae) in nitrogen limitation, Aquaculture, 2007, 272, 717–722 10.1016/j.aquaculture.2007.07.213Search in Google Scholar

[122] Donato M., Vilela M.H., Bandarra N.M., Fatty acids, sterols, alpha-tocopherol and total carotenoids composition of Diacronema vlkianum, J. Food Lipids, 2003, 10, 267–276 10.1111/j.1745-4522.2003.tb00020.xSearch in Google Scholar

[123] Barbosa M.J., Zijffers J.W., Nisworo A., Vaes W., van Schoonhoven J., Wijffels R.H., Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique, Biotechnol. Bioeng., 2005, 89, 233–242 10.1002/bit.20346Search in Google Scholar

[124] López-Rosales L., Gallardo-Rodríguez J.J., Sánchez-Mirón A., Cerón-García M., Belarbi El H., García-Camacho F., et al., Simultaneous effect of temperature and irradiance on growth and okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum, Toxins, 2014, 6, 229–253 10.3390/toxins6010229Search in Google Scholar

[125] Hejazi M.A., Holwerda E., Wijffels R.H., Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors, Biotechnol. Bioeng., 2004, 85, 475–481 10.1002/bit.10914Search in Google Scholar

[126] Fábregas J., Otero A., Maseda A., Dominguez A., Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis, J. Biotechnol., 2001, 89, 65–71 10.1016/S0168-1656(01)00289-9Search in Google Scholar

[127] Mendoza H., Molina Cedrés C., de la Jara A., Nordström L., Freijanes K., Carmona L., Quantitative and qualitative variation of the fatty acid composition in the dinoflagellate Crypthecodinium cohnii under nitrogen starvation conditions, Grasas y Aceites, 2008, 59, 27–32, (in Spanish) 10.3989/gya.2008.v59.i1.486Search in Google Scholar

Published Online: 2014-8-17
Published in Print: 2014-12-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-014-0350-x/html
Scroll to top button