Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 21, 2012

Zooplankton communities of inter-connected sections of lower River Oder (NW Poland)

  • Robert Czerniawski EMAIL logo , Małgorzata Pilecka-Rapacz and Józef Domagała
From the journal Open Life Sciences

Abstract

The aim of this study was the determination and comparative analysis of the zooplankton communities between the inter-connected sections of the lower Oder river in relation to physicochemical factors. The study was performed at five sites of Oder. Two sites were localized in the main channel of Oder (East Oder), other sites were localized in the west arm of Oder and at the beginning of the canal carrying the post-cooling water from the power plant, and the last site was below at the shallow channel joining the Western Oder with the Eastern Oder. At the channel site in which the two arms of the river are connected a significantly higher taxa number, abundance and biomass of crustaceans was observed than at the other sites. The taxonomic similarity index between all sites was at a rather low level. The Pearson’s coefficient, multiple regression analysis and CCA showed that temperature, conductivity and content of nitrates had the strongest impact on the abundance of zooplankton. Thus, in lower, slowly flowing section of River Oder the physico-chemical variables influenced zooplankton density. Post-cooling water from the power plant influenced the zooplankton communities only in the channel discharging the waters into the river, while its influence on the zooplankton in the Oder is insignificant.

[1] Hynes H.B.N., The ecology of running waters, University of Toronto Press, Toronto, 1970 Search in Google Scholar

[2] Vranovsky M., The effect of current velocity upon the biomass of zooplankton in the River Danube side arms, Biologia, 1995, 50, 461–464 Search in Google Scholar

[3] Basu B.K., Pick F.R., Factors regulating phytoplankton and zooplankton biomass in temperate rivers, Limnol Oceanogr., 1996, 41, 1572–1577 http://dx.doi.org/10.4319/lo.1996.41.7.157210.4319/lo.1996.41.7.1572Search in Google Scholar

[4] Chang K.H., Doi H., Imai H., Gunji F., Nakano S.I., Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory, Limnology, 2008, 9, 125–133 http://dx.doi.org/10.1007/s10201-008-0244-610.1007/s10201-008-0244-6Search in Google Scholar

[5] Czerniawski R., Spatial pattern of potamozooplankton community of the slowly flowing fishless stream in relation to abiotic and biotic factors, Pol. J. Ecol., 2012, 6, 323–338 Search in Google Scholar

[6] Zhou S., Tang T., Wu N., Fu X., Cai Q., Impact of small dam on riverine zooplankton, Internat. Rev. Hydrobiol., 2008, 93, 297–311 http://dx.doi.org/10.1002/iroh.20071103810.1002/iroh.200711038Search in Google Scholar

[7] Kobayashi T., Shiel R.J., Gibbs P., Dixon P.I., Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers, Hydrobiologia, 1998, 377, 133–145 http://dx.doi.org/10.1023/A:100324051136610.1023/A:1003240511366Search in Google Scholar

[8] Czerniawski R., DomagaŁa J., Similarities in zooplankton community between River Drawa and its two tributaries (Polish part of River Odra), Hydrobiologia, 2010, 638, 137–149 http://dx.doi.org/10.1007/s10750-009-0036-y10.1007/s10750-009-0036-ySearch in Google Scholar

[9] Czerniawski R., DomagaŁa J., Zooplankton communities of two lake outlets in relation to abiotic factors, Cent. Eur. J. Biol., 2010, 5, 240–255 http://dx.doi.org/10.2478/s11535-009-0062-910.2478/s11535-009-0062-9Search in Google Scholar

[10] Richardson W.B., Microcrustacea in flowing water: experimental analysis of washout times & a field test, Freshw. Biol., 1992, 28, 217–230 http://dx.doi.org/10.1111/j.1365-2427.1992.tb00578.x10.1111/j.1365-2427.1992.tb00578.xSearch in Google Scholar

[11] Ejsmont-Karabin J., Węgleńska T., Changes in the zooplankton structure in the transitory river-lakeriver zone. The River Krutynia system, Mazurian Lake District, Zesz. Nauk. Kom. „CzŁowiek i Środowisko”, 1996, 13, 263–289 (in Polish) Search in Google Scholar

[12] Hillbricht-Ilkowska A., Shallow lakes in lowland river systems: Role in transport and transformations of nutrients and in biological diversity, Hydrobiologia, 1999, 408/409, 349–358 http://dx.doi.org/10.1023/A:101703481372910.1023/A:1017034813729Search in Google Scholar

[13] Nielsen D., Watson G., Petrie R., Microfaunal communities in three lowland rivers under differing regimes, Hydrobiologia, 2005, 543, 101–111 http://dx.doi.org/10.1007/s10750-004-6946-910.1007/s10750-004-6946-9Search in Google Scholar

[14] Hillbricht-Ilkowska A., Zdanowski B., Effect of thermal effluents and retention time on lake functioning and ecological efficiencies in plankton communities, Int. Rev. Ges. Hydrobiol., 1978, 63, 609–617 http://dx.doi.org/10.1002/iroh.1978063050510.1002/iroh.19780630505Search in Google Scholar

[15] Hillbricht-Ilkowska A., Ejsmont-Karabin J., Węgleńska T., Long-term changes in the composition, productivity and trophic efficiency in the zooplankton community of heated lakes near Konin (Poland), Ekol. Pol., 1988, 36, 115–144 Search in Google Scholar

[16] Ejsmont-Karabin J., Węgleńska T., Spatial distribution of the zooplankton and its population features in two lakes of different heated-water through-flow, Ekol. Pol., 1988, 36, 203–230 Search in Google Scholar

[17] Tunowski J., The effect of heating and water exchange on the zooplankton composition in heated Konin lakes, Arch. Pol. Fish., 1994, 2, 235–255 Search in Google Scholar

[18] Tunowski J., Zooplankton structure in heated lakes with differing thermal regimes and water retention, Arch. Pol. Fish., 2009, 17, 291–303 http://dx.doi.org/10.2478/v10086-009-0021-010.2478/v10086-009-0021-0Search in Google Scholar

[19] Czerniawski R., Pilecka-Rapacz M., Summer zooplankton in small rivers in relation to selected conditions, Cent. Eur. J. Biol., 2011, 4, 659–674 http://dx.doi.org/10.2478/s11535-011-0024-x10.2478/s11535-011-0024-xSearch in Google Scholar

[20] Baranyi C., Hein T., Holarek C., Keckeis S., Schiemer F., Zooplankton biomass and community structure in a Danube river floodplain system: effects of hydrology, Freshwater Biol., 2002, 47, 473–482 http://dx.doi.org/10.1046/j.1365-2427.2002.00822.x10.1046/j.1365-2427.2002.00822.xSearch in Google Scholar

[21] Vadadi-Fülöp C., Hufnagel L., Jablonszky G., Zsuga K., Crustacean plankton abundance in the Danube River and its side arms in Hungary, Biologia, 2009, 64, 1184–1195 http://dx.doi.org/10.2478/s11756-009-0202-810.2478/s11756-009-0202-8Search in Google Scholar

[22] Schröder T., Colonising strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany), Internat. Rev. Hydrobiol., 2001, 86, 635–660 http://dx.doi.org/10.1002/1522-2632(200110)86:6<635::AID-IROH635>3.0.CO;2-X10.1002/1522-2632(200110)86:6<635::AID-IROH635>3.0.CO;2-XSearch in Google Scholar

[23] Wagler E., Crustacea (Crustaceans), In: Brohmer P., Ehrmann P., Ulmer G. (Eds.), The animals of Central Europe, 2nd ed, Quelle and Meyer, Leipzig, 1937 (in German) Search in Google Scholar

[24] Kutikova L.A., The rotifer fauna of USSR, Nauka, Leningrad, 1970 (in Russian) Search in Google Scholar

[25] Harding J.P., Smith W.A., A key to the British freshwater cyclopid and calanoid copepods, FBA Special Publication, Fresh. Biol. Assoc., Far Sawrey, Cumbria, 1974 Search in Google Scholar

[26] Radwan S., Rotifers, Polskie Towarzystwo Hydrobiologiczne, Łódź, 2004 (in Polish) Search in Google Scholar

[27] Ruttner-Kolisko A., Suggestion for biomass calculation of plankton rotifers, Arch. Hydrobiol. Beih. Ergebn. Limnol., 1977, 8, 71–76 Search in Google Scholar

[28] McCauley E., The estimation of the abundance and biomass of zooplankton in samples, In: Downing J.A., Rigler J.A. (Eds.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, Blackwell Scientific Publication, London, 1984 Search in Google Scholar

[29] Ejsmont-Karabin J., Empirical equations for biomass calculation of planktonic rotifers, Pol. Archiv. Hydrobiol., 1998, 45, 523–522 Search in Google Scholar

[30] Oksanen J., Multivariate Analysis of Ecological Communities in R: vegan tutorial, [Tutorial document], 2009 Search in Google Scholar

[31] Akopian M., Garnier J., Pourriot R., A large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation, J. Plankton Res., 1999, 21, 285–297 http://dx.doi.org/10.1093/plankt/21.2.28510.1093/plankt/21.2.285Search in Google Scholar

[32] Holst H., Zimmermann-Timm H., Kausch H., Longitudinal and transverse distribution of plankton rotifers in the potamal of the river Elbe (Germany) during late summer, Internat. Rev. Hydrobiol., 2002, 87, 267–280 http://dx.doi.org/10.1002/1522-2632(200205)87:2/3<267::AID-IROH267>3.0.CO;2-F10.1002/1522-2632(200205)87:2/3<267::AID-IROH267>3.0.CO;2-FSearch in Google Scholar

[33] Kuczyńska-Kippen N., Nagengast B., The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities, Hydrobiologia, 2006, 559, 203–212 http://dx.doi.org/10.1007/s10750-005-0867-010.1007/s10750-005-0867-0Search in Google Scholar

[34] Estlander S., Nurminen L., Olin M., Vinni M., Horppila J., Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats, Hydrobiologia, 2009, 620, 109–120 http://dx.doi.org/10.1007/s10750-008-9621-810.1007/s10750-008-9621-8Search in Google Scholar

[35] Cottenie K., Michels E., Nuytten N., De Meester L., Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds, Ecology, 2003, 84, 991–1000 http://dx.doi.org/10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2Search in Google Scholar

[36] Walks D.J, Cyr M., Movement of plankton through lake-stream systems, Freshwater Biol., 2004, 49, 745–759 http://dx.doi.org/10.1111/j.1365-2427.2004.01220.x10.1111/j.1365-2427.2004.01220.xSearch in Google Scholar

[37] Lair N., A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota, River Res. Appl., 2006, 22, 567–593 http://dx.doi.org/10.1002/rra.92310.1002/rra.923Search in Google Scholar

[38] Pourriot R., Rougier C., Miquelis A, Origin and development of river zooplankton: example of the Marne, Hydrobiologia, 1997, 345, 143–148 http://dx.doi.org/10.1023/A:100293580779510.1023/A:1002935807795Search in Google Scholar

[39] Karabin A., Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of Lake Eutrophication. I. Structural and quantitative features, Pol. J. Ecol., 1985, 33, 567–616 Search in Google Scholar

[40] Evans M.S., Warren G.J., Page D.I., The effects of power plant passage on zooplankton mortalities: eight years of study at the Donald C. Cook Nuclear Plant, Wat. Res., 1986, 20, 725–734 http://dx.doi.org/10.1016/0043-1354(86)90096-510.1016/0043-1354(86)90096-5Search in Google Scholar

[41] GoŁdyn R., Kowalczewska-Madura K., Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland, J. Plankton Res., 2008, 30, 33–42 10.1093/plankt/fbm086Search in Google Scholar

[42] Kamarainen A.M., Rowland F.E., Biggs R., Carpenter S.R., Zooplankton and the total phosphorus — chlorophyll a relationship: hierarchical Bayesian analysis of measurement error, Can. J. Fish. Aquat. Sci., 2008, 65, 2644–2655 http://dx.doi.org/10.1139/F08-16110.1139/F08-161Search in Google Scholar

[43] Dodson, S.I., Lillie R.A., Will-Wolf S., Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes, Ecol Appl, 2005, 15, 1191–1198 http://dx.doi.org/10.1890/04-149410.1890/04-1494Search in Google Scholar

[44] Swan C.M., Palmer M.A., What drives small-scale spatial patterns in lotic meiofauna communities? Freshwat. Biol., 2000, 44, 109–121 http://dx.doi.org/10.1046/j.1365-2427.2000.00587.x10.1046/j.1365-2427.2000.00587.xSearch in Google Scholar

[45] Simm A.T., Changes in the composition and quantitative relations of the phytoplankton in heated lakes near Konin (Poland), Ekol. Pol., 1988, 36, 97–113 Search in Google Scholar

[46] Socha D., Hutorowicz A., Changes in the quantitative relations of the phytoplankton in heated lakes, Arch. Pol. Fish., 2009, 17, 239–251 http://dx.doi.org/10.2478/v10086-009-0017-910.2478/v10086-009-0017-9Search in Google Scholar

[47] Zdanowski B., Korycka A., Dębicka A., Long-term variation in habitat and trophic factors in the Konin lakes (Poland) under the influence of heated-water discharge and pollution, Ekol. Pol., 1988, 36, 47–77 Search in Google Scholar

[48] Leeper D.A., Taylor B., Plankton composition, abundance and dynamics in a severely stressed cooling reservoir, J. Plankton Res., 1995, 17, 821–843 http://dx.doi.org/10.1093/plankt/17.4.82110.1093/plankt/17.4.821Search in Google Scholar

Published Online: 2012-11-21
Published in Print: 2013-1-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-012-0110-8/html
Scroll to top button