Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 2, 2011

Parthenogenesis in mammals: pros and cons in pluripotent cell derivation

  • Georgia Pennarossa EMAIL logo , Alessio Paffoni , Guido Ragni , Fulvio Gandolfi and Tiziana Brevini
From the journal Open Life Sciences

Abstract

Embryonic stem cells (ESCs) represent a useful tool for cell therapy studies, however the use of embryos for their derivation give rise to ethical, religious and legal problems when applied to the human. During the last years parthenogenesis has been proposed as an alternative source to obtain ESCs. Based on the fact that parthenotes avoid many concerns surrounding the “ad hoc” in vitro production and following destruction of viable human embryos. Unfortunately many aspects related to parthenogenetic cell biology are not fully understood and still need to be elucidated. In this review we describe advantages and limits of these cells. We discuss their typical ESC morphology and high telomerase activity, which disappears after differentiation. We examine the pluripotency signature that they share with bi-parental ESCs. We review their high differentiation plasticity that allow for the derivation of several mature cell type populations when we expose these cells to adequate conditions. On the other hand, in-depth analysis demonstrated chromosome mal-segregation and altered mechanisms controlling centriole arrangement and mitotic spindle formation in these cells. We hypothesize their monoparental origin as one of the possible cause of these anomalies and suggest a great caution if a therapeutic use is considered.

[1] Brevini T.A., Gandolfi F., Parthenotes as a source of embryonic stem cells, Cell Prolif., 2008, 41, 20–30 http://dx.doi.org/10.1111/j.1365-2184.2008.00485.x10.1111/j.1365-2184.2008.00485.xSearch in Google Scholar PubMed PubMed Central

[2] Evans M.J., Kaufman M.H., Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, 292, 154–156 http://dx.doi.org/10.1038/292154a010.1038/292154a0Search in Google Scholar PubMed

[3] Martin G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Natl. Acad. Sci. USA, 1981, 78, 7634–7638 http://dx.doi.org/10.1073/pnas.78.12.763410.1073/pnas.78.12.7634Search in Google Scholar PubMed PubMed Central

[4] Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., et al., Embryonic stem cell lines derived from human blastocysts, Science, 1998, 282, 1145–1147 http://dx.doi.org/10.1126/science.282.5391.114510.1126/science.282.5391.1145Search in Google Scholar PubMed

[5] Nagy A., Rossant J., Nagy R., Abramow-Newerly W., Roder J.C., Derivation of completely cell culturederived mice from early-passage embryonic stem cells, Proc. Natl. Acad. Sci. USA, 1993, 90, 8424–8428 http://dx.doi.org/10.1073/pnas.90.18.842410.1073/pnas.90.18.8424Search in Google Scholar PubMed PubMed Central

[6] Brook F.A., Gardner R.L., The origin and efficient derivation of embryonic stem cells in the mouse, Proc. Natl. Acad. Sci. USA, 1997, 94, 5709–5712 http://dx.doi.org/10.1073/pnas.94.11.570910.1073/pnas.94.11.5709Search in Google Scholar PubMed PubMed Central

[7] Raff M., Adult stem cell plasticity: fact or artifact? Annu. Rev. Cell Dev. Biol., 2003, 19, 1–22 http://dx.doi.org/10.1146/annurev.cellbio.19.111301.14303710.1146/annurev.cellbio.19.111301.143037Search in Google Scholar PubMed

[8] Chung Y., Klimanskaya I., Becker S., Marh J., Lu S.J., Johnson J., et al., Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres, Nature, 2006, 439, 216–219 http://dx.doi.org/10.1038/nature0427710.1038/nature04277Search in Google Scholar PubMed

[9] Klimanskaya I., Chung Y., Becker S., Lu S.J., Lanza R., Human embryonic stem cell lines derived from single blastomeres, Nature, 2006, 444, 481–485 http://dx.doi.org/10.1038/nature0514210.1038/nature05142Search in Google Scholar PubMed

[10] Zhang X., Stojkovic P., Przyborski S., Cooke M., Armstrong L., Lako M., et al., Derivation of human embryonic stem cells from developing and arrested embryos, Stem Cells, 2006, 24, 2669–2676 http://dx.doi.org/10.1634/stemcells.2006-037710.1634/stemcells.2006-0377Search in Google Scholar PubMed

[11] Condic M.L., Condic S.B., Hurlbut W.B., Producing non-embryonic organisms for stem cells, Natl Cathol Bioeth Q., 2005, 5, 19–22 10.5840/ncbq20055250Search in Google Scholar

[12] Meissner A., Jaenisch R., Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts, Nature, 2006, 439, 212–215 http://dx.doi.org/10.1038/nature0425710.1038/nature04257Search in Google Scholar

[13] Takahashi K., Yamanaka S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, 126, 663–76 http://dx.doi.org/10.1016/j.cell.2006.07.02410.1016/j.cell.2006.07.024Search in Google Scholar

[14] Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4, Cell, 1998, 95, 379–391 http://dx.doi.org/10.1016/S0092-8674(00)81769-910.1016/S0092-8674(00)81769-9Search in Google Scholar

[15] Niwa H., Miyazaki J., Smith A.G., Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells, Nat. Genet., 2000, 24, 372–376 http://dx.doi.org/10.1038/7419910.1038/74199Search in Google Scholar

[16] Avilion A.A., Nicolis S.K., Pevny L.H., Perez L., Vivian N., Lovell-Badge R., Multipotent cell lineages in early mouse development depend on SOX2 function, Genes Dev., 2003, 17, 126–140 http://dx.doi.org/10.1101/gad.22450310.1101/gad.224503Search in Google Scholar

[17] Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells, Cell, 2003, 113, 643–655 http://dx.doi.org/10.1016/S0092-8674(03)00392-110.1016/S0092-8674(03)00392-1Search in Google Scholar

[18] Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., Takahashi K., et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells, Cell, 2003, 113, 631–642 http://dx.doi.org/10.1016/S0092-8674(03)00393-310.1016/S0092-8674(03)00393-3Search in Google Scholar

[19] Xu Y.N., Guan N., Wang Z.D., Shan Z.Y., Shen J.L., Zhang Q.H., et al., ES cell extract-induced expression of pluripotent factors in somatic cells, Anat Rec. (Hoboken), 2009, 292, 1229–1234 10.1002/ar.20919Search in Google Scholar PubMed

[20] Cho H.J., Lee C.S., Kwon Y.W., Paek J.S., Lee S.H., Hur J., et al., Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation, Blood, 2010, 116, 386–95 http://dx.doi.org/10.1182/blood-2010-02-26958910.1182/blood-2010-02-269589Search in Google Scholar PubMed

[21] Brevini T.A., Pennarossa G., de Eguileor M., Tettamanti G., Ragni G., Paffoni A., et al., Parthenogenetic Cell Lines: An Unstable Equilibrium Between Pluripotency and Malignant Transformation, Curr Pharm Biotechnol., 2011, 12, 206–212 http://dx.doi.org/10.2174/13892011179429583710.2174/138920111794295837Search in Google Scholar PubMed

[22] Brevini T.A., Pennarossa G., Antonini S., Paffoni A., Tettamanti G., Montemurro T., et al., Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts, Stem Cell Rev., 2009, 5, 340–352 http://dx.doi.org/10.1007/s12015-009-9086-910.1007/s12015-009-9086-9Search in Google Scholar PubMed

[23] Rougier N., Werb Z., Minireview: Parthenogenesis in mammals, Mol. Reprod. Dev., 2001, 59, 468–474 http://dx.doi.org/10.1002/mrd.105410.1002/mrd.1054Search in Google Scholar PubMed

[24] McElroy S.L., Byrne J.A., Chavez S.L., Behr B., Hsueh A.J., Westphal L.M., et al., Parthenogenic blastocysts derived from cumulus-free in vitro matured human oocytes, PLoS One, 5, e10979 10.1371/journal.pone.0010979Search in Google Scholar PubMed PubMed Central

[25] Surani M.A., Reprogramming of genome function through epigenetic inheritance, Nature, 2001, 414, 122–128 http://dx.doi.org/10.1038/3510218610.1038/35102186Search in Google Scholar PubMed

[26] Brevini T.A., Pennarossa G., Antonini S., Gandolfi F., Parthenogenesis as an approach to pluripotency: advantages and limitations involved, Stem Cell Rev., 2008, 4, 127–135 http://dx.doi.org/10.1007/s12015-008-9027-z10.1007/s12015-008-9027-zSearch in Google Scholar PubMed

[27] Kaufman M.H., Robertson E.J., Handyside A.H., Evans M.J., Establishment of pluripotential cell lines from haploid mouse embryos, J. Embryol. Exp. Morphol., 1983, 73, 249–261 10.1242/dev.73.1.249Search in Google Scholar

[28] Allen N.D., Barton S.C., Hilton K., Norris M.L., Surani M.A., A functional analysis of imprinting in parthenogenetic embryonic stem cells, Development, 1994, 120, 1473–1482 10.1242/dev.120.6.1473Search in Google Scholar PubMed

[29] Dighe V., Clepper L., Pedersen D., Byrne J., Ferguson B., Gokhale S., et al., Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes, Stem Cells, 2008, 26, 756–766 http://dx.doi.org/10.1634/stemcells.2007-086910.1634/stemcells.2007-0869Search in Google Scholar PubMed PubMed Central

[30] Cibelli J.B., Grant K.A., Chapman K.B., Cunniff K., Worst T., Green H.L., et al., Parthenogenetic stem cells in nonhuman primates, Science, 2002, 295, 819 http://dx.doi.org/10.1126/science.106563710.1126/science.1065637Search in Google Scholar PubMed

[31] Lin G., OuYang Q., Zhou X., Gu Y., Yuan D., Li W., et al., A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure, Cell Res., 2007, 17, 999–1007 http://dx.doi.org/10.1038/cr.2007.9710.1038/cr.2007.97Search in Google Scholar PubMed

[32] Mai Q., Yu Y., Li T., Wang L., Chen M.J., Huang S.Z., et al., Derivation of human embryonic stem cell lines from parthenogenetic blastocysts, Cell Res., 2007, 17, 1008–1019 http://dx.doi.org/10.1038/cr.2007.10210.1038/cr.2007.102Search in Google Scholar PubMed

[33] Revazova E.S., Turovets N.A., Kochetkova O.D., Kindarova L.B., Kuzmichev L.N., Janus J.D., et al., Patient-specific stem cell lines derived from human parthenogenetic blastocysts, Cloning Stem Cells, 2007, 9, 432–449 http://dx.doi.org/10.1089/clo.2007.003310.1089/clo.2007.0033Search in Google Scholar PubMed

[34] Revazova E.S., Turovets N.A., Kochetkova O.D., Agapova L.S., Sebastian J.L., Pryzhkova M.V., et al., HLA homozygous stem cell lines derived from human parthenogenetic blastocysts, Cloning Stem Cells, 2008, 10, 11–24 http://dx.doi.org/10.1089/clo.2007.006310.1089/clo.2007.0063Search in Google Scholar PubMed

[35] Marchant J., Human eggs supply ‘ethical’ stem cells, Nature News, 2006, 441, 1038 http://dx.doi.org/10.1038/4411038a10.1038/4411038aSearch in Google Scholar PubMed

[36] Brivanlou A.H., Gage F.H., Jaenisch R., Jessell T., Melton D., Rossant J., Stem cells. Setting standards for human embryonic stem cells, Science, 2003, 300, 913–916 http://dx.doi.org/10.1126/science.108294010.1126/science.1082940Search in Google Scholar PubMed

[37] Loring J.F., Rao M.S., Establishing standards for the characterization of human embryonic stem cell lines, Stem Cells, 2006, 24, 145–150 http://dx.doi.org/10.1634/stemcells.2005-043210.1634/stemcells.2005-0432Search in Google Scholar PubMed

[38] Eckardt S., Leu N.A., Bradley H.L., Kato H., Bunting K.D., McLaughlin K.J., Hematopoietic reconstitution with androgenetic and gynogenetic stem cells, Genes Dev., 2007, 21, 409–419 http://dx.doi.org/10.1101/gad.152420710.1101/gad.1524207Search in Google Scholar PubMed PubMed Central

[39] Sathananthan A.H., Selvaraj K., Girijashankar M.L., Ganesh V., Selvaraj P., Trounson A.O., From oogonia to mature oocytes: inactivation of the maternal centrosome in humans, Microsc. Res. Tech., 2006, 69, 396–407 http://dx.doi.org/10.1002/jemt.2029910.1002/jemt.20299Search in Google Scholar PubMed

[40] Schatten G., The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization, Dev. Biol., 1994, 165, 299–335 http://dx.doi.org/10.1006/dbio.1994.125610.1006/dbio.1994.1256Search in Google Scholar PubMed

[41] Sun Q.Y., Schatten H., Centrosome inheritance after fertilization and nuclear transfer in mammals, Adv. Exp. Med. Biol., 2007, 591, 58–71 http://dx.doi.org/10.1007/978-0-387-37754-4_410.1007/978-0-387-37754-4_4Search in Google Scholar

[42] Piel M., Nordberg J., Euteneuer U., Bornens M., Centrosome-dependent exit of cytokinesis in animal cells, Science, 2001, 291, 1550–1553 http://dx.doi.org/10.1126/science.105733010.1126/science.1057330Search in Google Scholar

[43] Schatten G., Simerly C., Schatten H., Maternal inheritance of centrosomes in mammals? Studies on parthenogenesis and polyspermy in mice, Proc. Natl. Acad. Sci. USA, 1991, 88, 6785–6789 http://dx.doi.org/10.1073/pnas.88.15.678510.1073/pnas.88.15.6785Search in Google Scholar

[44] Wu G.J., Simerly C., Zoran S.S., Funte L.R., Schatten G., Microtubule and chromatin dynamics during fertilization and early development in rhesus monkeys, and regulation by intracellular calcium ions, Biol. Reprod., 1996, 55, 260–270 http://dx.doi.org/10.1095/biolreprod55.2.26010.1095/biolreprod55.2.260Search in Google Scholar

[45] Zamboni L., Electron miroscopic studies on rabbit ova1: The follicular oocyte., J Ultrastruct Res., 1966, 14, 95–117 http://dx.doi.org/10.1016/S0022-5320(66)80038-210.1016/S0022-5320(66)80038-2Search in Google Scholar

[46] Navara C.S., First N.L., Schatten G., Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster, Dev. Biol., 1994, 162, 29–40 http://dx.doi.org/10.1006/dbio.1994.106410.1006/dbio.1994.1064Search in Google Scholar PubMed

[47] Paweletz N., Mazia D., Finze E.M., Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. II. Bipolarization before the first mitosis, Eur. J. Cell Biol., 1987, 44, 205–213 Search in Google Scholar

[48] Gard D.L., Affleck D., Error B.M., Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule organization during early diplotene, Dev. Biol., 1995, 168, 189–201 http://dx.doi.org/10.1006/dbio.1995.107110.1006/dbio.1995.1071Search in Google Scholar PubMed

[49] Manandhar G., Schatten H., Sutovsky P., Centrosome reduction during gametogenesis and its significance, Biol. Reprod., 2005, 72, 2–13 http://dx.doi.org/10.1095/biolreprod.104.03124510.1095/biolreprod.104.031245Search in Google Scholar PubMed

[50] Chung E., Chen R.H., Spindle checkpoint requires Mad1-bound and Mad1-free Mad2, Mol. Biol. Cell, 2002, 13, 1501–1511 http://dx.doi.org/10.1091/mbc.02-01-000310.1091/mbc.02-01-0003Search in Google Scholar PubMed PubMed Central

[51] Mayer C., Filopei J., Batac J., Alford L., Paluh J.L., An extended anaphase signaling pathway for Mad2p includes microtubule organizing center proteins and multiple motor-dependent transitions, Cell Cycle, 2006, 5, 1456–1463 http://dx.doi.org/10.4161/cc.5.13.291210.4161/cc.5.13.2912Search in Google Scholar PubMed

[52] May K.M., Hardwick K.G., The spindle checkpoint, J. Cell Sci., 2006, 119, 4139–4142 http://dx.doi.org/10.1242/jcs.0316510.1242/jcs.03165Search in Google Scholar

[53] Santos T.A., Dias C., Henriques P., Brito R., Barbosa A., Regateiro F., et al., Cytogenetic analysis of spontaneously activated noninseminated oocytes and parthenogenetically activated failed fertilized human oocytes—implications for the use of primate parthenotes for stem cell production, J. Assist. Reprod. Genet., 2003, 20, 122–130 http://dx.doi.org/10.1023/A:102263092423610.1023/A:1022630924236Search in Google Scholar

[54] Cheng W.M., Sun X.L., An L., Zhu S.E., Li X.H., Li Y., et al., Effect of different parthenogenetic activation methods on the developmental competence of in vitro matured porcine oocytes, Anim. Biotechnol., 2007, 18, 131–141 http://dx.doi.org/10.1080/1049539060109614810.1080/10495390601096148Search in Google Scholar

[55] Winger Q.A., De La Fuente R., King W.A., Armstrong D.T., Watson A.J., Bovine parthenogenesis is characterized by abnormal chromosomal complements: implications for maternal and paternal co-dependence during early bovine development, Dev. Genet., 1997, 21, 160–166 http://dx.doi.org/10.1002/(SICI)1520-6408(1997)21:2<160::AID-DVG5>3.0.CO;2-510.1002/(SICI)1520-6408(1997)21:2<160::AID-DVG5>3.0.CO;2-5Search in Google Scholar

[56] Fulka H., Hirose M., Inoue K., Ogonuki N., Wakisaka N., Matoba S., et al., Production of Mouse Embryonic Stem Cell Lines from Maturing Oocytes by Direct Conversion of Meiosis into Mitosis, Stem Cells, 2011, 29, 517–527 http://dx.doi.org/10.1002/stem.58510.1002/stem.585Search in Google Scholar

Published Online: 2011-9-2
Published in Print: 2011-10-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-011-0047-3/html
Scroll to top button