Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 27, 2011

Effects of plant lectin and extracts on adhesion molecules of endothelial progenitors

  • Florin Iordache EMAIL logo , Iordache Carmen , Pop Aneta , Marilena Lupu , Eugen Andrei , Cosmin Buzila and Horia Maniu
From the journal Open Life Sciences

Abstract

Promise of cell therapy has advanced the use of adult stem cells towards the development of novel approaches to promote regeneration of injured endothelium. The aim of this study was to stimulate endothelial progenitor cells (EPCs) with lectin isolated from Solanum tuberosum (potato) shoot and Calendula officinalis (marigold) extracts, in order to increase EPCs proliferation and gene expression of molecules with roles in chemotaxis and adhesion for a better attachment to injured vascular tissue. EPCs were differentiated from umbilical cord blood-derived mononuclear cells and characterized by light microscopy, flow cytometry, and vascular tube-like structures formation on Matrigel. Cell proliferation was determined by MTS assay, and gene expression of molecules involved in EPCs adhesion (VCAM-1, VE-cadherin, ICAM-1, PECAM-1, P-selectin) and chemotaxis was determined (CXCR4, Tie-2) by RT-PCR. For the assessment of cell motility, wound-healing assay was employed. Both potato shoot lectin and marigold extracts stimulated EPCs proliferation in a concentration dependent manner and were able to increase expression of adhesion and chemotactic molecules. Marigold flower extract proved to be more efficient. This study demonstrates the usefulness of potato lectin and marigold extracts to increase EPCs proliferation and modulate gene expression of chemotactic and adhesion molecules, which may facilitate EPCs attachment to injured endothelium.

[1] Chandra N.R., Kumar N., Jeyakani J., Singh D.D., Gowda S.B., Prathima M.N., Lectindb: a plant lectin database, Glycobiology, 2006, 16, 938–946 http://dx.doi.org/10.1093/glycob/cwl01210.1093/glycob/cwl012Search in Google Scholar

[2] Sharon N., Lis H., History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, 2004, 14, 53R–62R http://dx.doi.org/10.1093/glycob/cwh12210.1093/glycob/cwh122Search in Google Scholar

[3] Loris R., Hamelryck T., Bouckaert J., Wyns L., Legume lectin structure, Biochim. Biophys. Acta, 1998, 1383, 9–36 http://dx.doi.org/10.1016/S0167-4838(97)00182-910.1016/S0167-4838(97)00182-9Search in Google Scholar

[4] Wearne K.A., Winter H.C., O’shea K., Goldstein I.J., Use of lectins for probing differentiated human embryonic stem cells for carbohydrates, Glycobiology, 2006, 16, 981–990 http://dx.doi.org/10.1093/glycob/cwl01910.1093/glycob/cwl019Search in Google Scholar

[5] Yao H., Xie X., Li Y., Wang D., Han S., Shi S., et al., Legume lectin FRIL preserves neural progenitor cells in suspension culture in vitro, Clin. Dev. Immunol., 2008, 2008, 1–6 http://dx.doi.org/10.1155/2008/53131710.1155/2008/531317Search in Google Scholar

[6] Gorudko I.V., Loiko E.N., Cherenkevich S.N., Timoshenko A.V., Formation of stable platelet aggregates by lectin from Solanum tuberosum, Biophysics, 2007, 52, 476–480 http://dx.doi.org/10.1134/S000635090705004110.1134/S0006350907050041Search in Google Scholar

[7] Dinescu G., Pop A., Togoe I., Militaru M., Ciobotaru E., Soare T., Modifications of visceral lymphoid tissue induced in chicken by an orally delivered lectin, J. Comp. Pathol., 2009, 14, 284–285 http://dx.doi.org/10.1016/j.jcpa.2009.08.02910.1016/j.jcpa.2009.08.029Search in Google Scholar

[8] Brown D.J., Dattner A.M., Phytotherapeutic approaches to common dermatologic conditions, Arch. Dermatol., 1998, 134, 1401–1404 http://dx.doi.org/10.1001/archderm.134.11.140110.1001/archderm.134.11.1401Search in Google Scholar

[9] Ramos A., Edreira A., Vizoso A., Betancourt J., Lopez M., Decalo M., Genotoxicity of an extract of Calendula officinalis L., J. Ethnopharmacol., 1998, 61, 49–55 http://dx.doi.org/10.1016/S0378-8741(98)00017-810.1016/S0378-8741(98)00017-8Search in Google Scholar

[10] Asahara T, Kawamoto A., Endothelial progenitor cells for postnatal vasculogenesis, Am. J. Physiol Cell Physiol., 2004, 287, C572–C579 http://dx.doi.org/10.1152/ajpcell.00330.200310.1152/ajpcell.00330.2003Search in Google Scholar PubMed

[11] Ingram D.A., Mead L.E., Tanaka H., Meade V., Fenoglio A., Mortell K., et al., Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood, Blood, 2004, 104, 2752–2760 http://dx.doi.org/10.1182/blood-2004-04-139610.1182/blood-2004-04-1396Search in Google Scholar

[12] Urbich C., Dimmeler S., Endothelial progenitor cells: characterization and role in vascular biology, Circ. Res., 2004, 95, 343–353 http://dx.doi.org/10.1161/01.RES.0000137877.89448.7810.1161/01.RES.0000137877.89448.78Search in Google Scholar

[13] Lupu M., Khalil M., Iordache F., Andrei E., Pfannkuche K., Spitkovsky D., et al., Direct contact of umbilical cord blood endothelial progenitors with living cardiac tissue is a requirement for vascular tube-like structures formation, J. Cell Mol. Med., (in press), DOI: 10.1111/j.1582-4934.2010.01197.x 10.1111/j.1582-4934.2010.01197.xSearch in Google Scholar

[14] Wu K.H., Zhou B., Lu S.H., Feng B., Yang S.G., Du W.T., et al., In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells, J. Cell Biochem., 2007, 100, 608–616 http://dx.doi.org/10.1002/jcb.2107810.1002/jcb.21078Search in Google Scholar

[15] Hristov M., Erl W., Weber P.C., Endothelial progenitor cells: mobilization, differentiation, and homing, Arterioscler. Thromb. Vasc. Biol., 2003, 23, 1185–1189 http://dx.doi.org/10.1161/01.ATV.0000073832.49290.B510.1161/01.ATV.0000073832.49290.B5Search in Google Scholar

[16] Mohle R., Bautz F., Rafii S., Moore M.A., Brugger W., Kanz L., The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cellderived factor-1, Blood, 1998, 91, 4523–4530 10.1182/blood.V91.12.4523Search in Google Scholar

[17] Shantsila E., Watson T., Lip G.Y., Endothelial progenitor cells in cardiovascular disorders, J. Am. Coll. Cardiol., 2007, 49, 741–752 http://dx.doi.org/10.1016/j.jacc.2006.09.05010.1016/j.jacc.2006.09.050Search in Google Scholar

[18] Matsumoto I., Jimbo A., Mizuno Y., Seno N., Jeanloz R.W., Purification and characterization of potato lectin, J. Biol. Chem., 1983, 258, 2886–2891 10.1016/S0021-9258(18)32801-1Search in Google Scholar

[19] Pop A., Dojana N., Balint E., Isolation, purification and characterization of a lectin from potato buds, Sci. Work C Ser. Vet. Med., 2004, 66–67, 211–215 Search in Google Scholar

[20] Safarikova M., Safarik I., One-step partial purification of Solanum tuberosum tuber lectin using magnetic chitosan particles, Biotechnol. Lett., 2000, 22, 941–945 http://dx.doi.org/10.1023/A:100569861657410.1023/A:1005698616574Search in Google Scholar

[21] Mateescu R., Pop A., Cornea C.P., Grebenisan I., Campeanu G., Microbial Enzymes-Lectins Interactions: Applications for Glycoproteins Purification, Roum. Biotechol. Lett., 2002, 7, 745–752 Search in Google Scholar

[22] Andreou I., Tousoulis D., Tentolouris C., Antoniades C., Stefanadis C., Potential role of endothelial progenitor cells in the pathophysiology of heart failure: clinical implications and perspectives, Atherosclerosis, 2006, 189, 247–254 http://dx.doi.org/10.1016/j.atherosclerosis.2006.06.02110.1016/j.atherosclerosis.2006.06.021Search in Google Scholar PubMed

[23] Botta R., Gao E., Stassi G., Bonci D., Pelosi E., Zwas D., et al., Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells, FASEB J., 2004, 18, 1392–1394 10.1096/fj.03-0879fjeSearch in Google Scholar

[24] Kocher A.A., Schuster M.D., Szabolcs M.J., Takuma S., Burkhoff D., Wang J., et al., Neovascularization of ischemic myocardium by human bone-marrowderived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function, Nat. Med., 2001, 7, 430–436 http://dx.doi.org/10.1038/8649810.1038/86498Search in Google Scholar

[25] Koponen J.K., Kekarainen T., Heinonen E., Laitinen A., Nystedt J., Laine J., et al., Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model, Mol. Ther., 2007, 15, 2172–2177 http://dx.doi.org/10.1038/sj.mt.630030210.1038/sj.mt.6300302Search in Google Scholar

[26] Ott I., Keller U., Knoedler M., Gotze K.S., Doss K., Fischer P., et al., Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction, FASEB J., 2005, 19, 992–994 10.1096/fj.04-3219fjeSearch in Google Scholar

[27] Yang C., Zhang Z.H., Li Z.J., Yang R.C., Qian G.Q., Han Z.C., Enhancement of neovascularization with cord blood CD133+ cell-derived endothelial progenitor cell transplantation, Thromb. Haemost., 2004, 91, 1202–1212 10.1160/TH03-06-0378Search in Google Scholar

[28] Murohara T., Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors, Trends Cardiovasc. Med., 2001, 11, 303–307 http://dx.doi.org/10.1016/S1050-1738(01)00128-110.1016/S1050-1738(01)00128-1Search in Google Scholar

[29] Gurtner G.C., Chang E., “Priming” endothelial progenitor cells: a new strategy to improve cell based therapeutics, Arterioscler. Thromb. Vasc. Biol., 2008, 28, 1034–1035 http://dx.doi.org/10.1161/ATVBAHA.108.16324610.1161/ATVBAHA.108.163246Search in Google Scholar PubMed

[30] Zemani F., Silvestre J.S., Fauvel-Lafeve F., Bruel A., Vilar J., Bieche I., et al., Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential, Arterioscler. Thromb. Vasc. Biol., 2008, 28, 644–650 http://dx.doi.org/10.1161/ATVBAHA.107.16004410.1161/ATVBAHA.107.160044Search in Google Scholar PubMed

[31] Matysik G., Wojciak-Kosior M., Paduch R., The influence of Calendulae officinalis flos extracts on cell cultures, and the chromatographic analysis of extracts, J. Pharm. Biomed. Anal., 2005, 38, 285–292 http://dx.doi.org/10.1016/j.jpba.2004.12.03410.1016/j.jpba.2004.12.034Search in Google Scholar PubMed

[32] Chandran P.K., Kuttan R., Effect of Calendula officinalis Flower Extract on Acute Phase Proteins, Antioxidant Defense Mechanism and Granuloma Formation During Thermal Burns, J. Clin. Biochem. Nutr., 2008, 43, 58–64 http://dx.doi.org/10.3164/jcbn.200804310.3164/jcbn.2008043Search in Google Scholar PubMed PubMed Central

[33] Vestweber D., VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation, Arterioscler. Thromb. Vasc. Biol., 2008, 28, 223–232 http://dx.doi.org/10.1161/ATVBAHA.107.15801410.1161/ATVBAHA.107.158014Search in Google Scholar

[34] Harris E.S., Nelson W.J., VE-cadherin: at the front, center, and sides of endothelial cell organization and function, Curr. Opin. Cell Biol., 2010, 22, 651–658 http://dx.doi.org/10.1016/j.ceb.2010.07.00610.1016/j.ceb.2010.07.006Search in Google Scholar

[35] Ley K., Huo Y., VCAM-1 is critical in atherosclerosis, J. Clin. Invest., 2001, 107, 1209–1210 http://dx.doi.org/10.1172/JCI1300510.1172/JCI13005Search in Google Scholar

[36] Yasuda M., Shimizu S., Ohhinata K., Naito S., Tokuyama S., Mori Y., et al., Differential roles of ICAM-1 and E-selectin in polymorphonuclear leukocyte-induced angiogenesis, Am. J. Physiol Cell Physiol., 2002, 282, C917–C925 10.1152/ajpcell.00223.2001Search in Google Scholar

[37] Timoshenko A.V., Kaltner H., Andre S., Gabius H.J., Lala P.K., Differential stimulation of VEGF-C production by adhesion/growth-regulatory galectins and plant lectins in human breast cancer cells, Anticancer Res., 2010, 30, 4829–4833 Search in Google Scholar

[38] Radisavljevic Z., Avraham H., Avraham S., Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OHkinase/AKT/Nitric oxide pathway and modulates migration of brain microvascular endothelial cells, J. Biol. Chem., 2000, 275, 20770–20774 http://dx.doi.org/10.1074/jbc.M00244820010.1074/jbc.M002448200Search in Google Scholar

[39] Leppanen V.M., Jeltsch M., Anisimov A., Tvorogov D., Aho K., Kalkkinen N., et al., Structural determinants of vascular endothelial growth factor-D - receptor binding and specificity, Blood, 2011, 117, 1507–1515 http://dx.doi.org/10.1182/blood-2010-08-30154910.1182/blood-2010-08-301549Search in Google Scholar

[40] Cebo C., Vergoten G., Zanetta J.P., Lectin activities of cytokines: functions and putative carbohydraterecognition domains, Biochim. Biophys. Acta, 2002, 1572, 422–434 10.1016/S0304-4165(02)00323-9Search in Google Scholar

[41] Kondo S., Scheef E.A., Sheibani N., Sorenson C.M., PECAM-1 isoform-specific regulation of kidney endothelial cell migration and capillary morphogenesis, Am. J. Physiol Cell Physiol., 2007, 292, C2070–C2083 http://dx.doi.org/10.1152/ajpcell.00489.200610.1152/ajpcell.00489.2006Search in Google Scholar PubMed

[42] Blann A.D., Nadar S.K., Lip G.Y., The adhesion molecule P-selectin and cardiovascular disease, Eur. Heart J., 2003, 24, 2166–2179 http://dx.doi.org/10.1016/j.ehj.2003.08.02110.1016/j.ehj.2003.08.021Search in Google Scholar PubMed

[43] Palazzo A.J., Jones S.P., Anderson D.C., Granger D.N., Lefer D.J., Coronary endothelial P-selectin in pathogenesis of myocardial ischemia-reperfusion injury, Am. J. Physiol., 1998, 275, H1865–H1872 10.1152/ajpheart.1998.275.5.H1865Search in Google Scholar PubMed

[44] Thurston G., Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis, Cell Tissue Res., 2003, 314, 61–68 http://dx.doi.org/10.1007/s00441-003-0749-610.1007/s00441-003-0749-6Search in Google Scholar PubMed

[45] Tuo Q.H., Zeng H., Stinnett A., Yu H., Aschner J.L., Liao D.F., et al., Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis, Am. J. Physiol Heart Circ. Physiol., 2008, 294, H2547–H2557 http://dx.doi.org/10.1152/ajpheart.01250.200710.1152/ajpheart.01250.2007Search in Google Scholar PubMed

[46] Chen L., Wu F., Xia W.H., Zhang Y.Y., Xu S.Y., Cheng F., et al., CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells, Cardiovasc. Res., 2010, 88, 462–470 http://dx.doi.org/10.1093/cvr/cvq20710.1093/cvr/cvq207Search in Google Scholar PubMed

[47] Jimenez-Medina E., Garcia-Lora A., Paco L., Algarra I., Collado A., Garrido F., A new extract of the plant Calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation, BMC Cancer, 2006, 6, 1–14 http://dx.doi.org/10.1186/1471-2407-6-11910.1186/1471-2407-6-119Search in Google Scholar PubMed PubMed Central

[48] Spelman K., Aldag R., Hamman A., Kwasnik E.M., Mahendra M.A., Obasi T.M., et al., Traditional herbal remedies that influence cell adhesion molecule activity, Phytother. Res., (in press), DOI: 10.1002/ptr.3350 10.1002/ptr.3350Search in Google Scholar PubMed

[49] Ding M., Zhao G.R., Yuan Y.J., Guo Z.X., Aqueous extract of Salvia miltiorrhoza regulates adhesion molecule expression of tumor necrosis factor alphainduced endothelial cells by blocking activation of nuclear factor kappaB, J. Cardiovasc. Pharmacol., 2005, 45, 516–524 http://dx.doi.org/10.1097/01.fjc.0000159643.82641.e910.1097/01.fjc.0000159643.82641.e9Search in Google Scholar PubMed

Published Online: 2011-4-27
Published in Print: 2011-6-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-011-0018-8/html
Scroll to top button