Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 6, 2009

Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn

  • Wende Li EMAIL logo , Arnold Hydamaka , Lynda Lowry and Trust Beta
From the journal Open Life Sciences

Abstract

Antioxidant capacity and phenolic compounds (phenolic acids and anthocyanins) of four berry fruits (strawberry, Saskatoon berry, raspberry and wild blueberry), chokecherry and seabuckthorn were compared in the present study. Total phenolic content and total anthocyanin content ranged from 22.83 to 131.88 g/kg and 3.51 to 13.13 g/kg, respectively. 2,2-Diphenyl-1-picryhydrazyl free radical scavenging activity ranged from 29.97 to 78.86%. Chokecherry had the highest antioxidant capacity when compared with berry fruits and seabuckthorn. The highest caffeic acid, gallic acid and trans-cinnamic acid levels were found in chokecherry (6455 mg/kg), raspberry (1129 mg/kg) and strawberry (566 mg/kg), respectively. Caffeic acid was also the major phenolic acid in Saskatoon berry (2088 mg/kg) and wild blueberry (1473 mg/kg). The findings that chokecherry has very high antioxidant capacity and caffeic acid levels, are useful for developing novel value-added antioxidant products and also provide evidence essential for breeding novel cultivars of fruit plants with strong natural antioxidants.

[1] Ames B.M., Shigens M.K., Hagen T.M., Oxidants, antioxidants and the degenerative diseases of aging, Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 7915–7922 http://dx.doi.org/10.1073/pnas.90.17.791510.1073/pnas.90.17.7915Search in Google Scholar PubMed PubMed Central

[2] Halliwell B., Free radical, antioxidants and human disease: curiosity, cause or consequence, Lancet, 1994, 344, 721–724 http://dx.doi.org/10.1016/S0140-6736(94)92211-X10.1016/S0140-6736(94)92211-XSearch in Google Scholar PubMed

[3] Ribolin E., Norat T., Epidemiological evidence of the protective effect of fruit and vegetables on cancer risk, Am. J. Clin. Nutr., 2003, 78, 559S–569S 10.1093/ajcn/78.3.559SSearch in Google Scholar PubMed

[4] Eberhardt M.V., Lee C.Y., Liu R.H., Antioxidant activity of fresh apples, Nature, 2000, 405, 903–904 10.1038/35016151Search in Google Scholar PubMed

[5] Arts I.C., Hollman P.C., Polyphenols and disease risk in epidemiologic studies, Am. J. Clin. Nutr., 2005, 81, 243S–255S 10.1093/ajcn/81.1.243SSearch in Google Scholar PubMed

[6] Kallio H., Yang B., Peippo P., Effects of different origins and harvesting time on Vitamin C, tocopherols and tocotrienols in seabuckthorn (Hippophane rhamnoides) berries, J. Agric. Food Chem., 2002, 50, 6136–6142 http://dx.doi.org/10.1021/jf020421v10.1021/jf020421vSearch in Google Scholar PubMed

[7] Scalzo J., Politi A., Pellegrini N., Mezzetti B., Battino M., Plant genotype affects total antioxidant capacity and phenolic contents in fruit, Nutrition, 2005, 21, 207–213 http://dx.doi.org/10.1016/j.nut.2004.03.02510.1016/j.nut.2004.03.025Search in Google Scholar PubMed

[8] Aaby K., Ekeberg D., Skrede G., Characterization of phenolic compounds in strawberry (Fragaria × ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity, J. Agric. Food Chem., 2007, 55, 4395–4406 http://dx.doi.org/10.1021/jf070259210.1021/jf0702592Search in Google Scholar PubMed

[9] Tulipani S., Mezzetti B., Capocasa F., Bompadre S., Beekwilder J., Vos C.H.R.D., et al., Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes, J. Agric. Food Chem., 2008, 56, 696–704 http://dx.doi.org/10.1021/jf071995910.1021/jf0719959Search in Google Scholar PubMed

[10] Zhang Y., Seeram N.P., Lee R., Feng L., Heber D., Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties, J. Agric. Food Chem., 2008, 56, 670–675 http://dx.doi.org/10.1021/jf071989c10.1021/jf071989cSearch in Google Scholar PubMed

[11] Slimestad R., Solheim H., Anthocyanins from black currants (Ribes nigrum L.), J. Agric. Food Chem., 2002, 50, 3228–3231 http://dx.doi.org/10.1021/jf011581u10.1021/jf011581uSearch in Google Scholar PubMed

[12] McDougall G.J., Dobson P., Smith P., Blake A., Stewart D., Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system, J. Agric. Food Chem., 2005, 53, 5896–5904 http://dx.doi.org/10.1021/jf050131p10.1021/jf050131pSearch in Google Scholar PubMed

[13] Zhou K., Yu L., Effects of extraction solvent on wheat bran antioxidant activity estimation, LWT-Food Sci. Technol., 2004, 37, 717–721 10.1016/j.lwt.2004.02.008Search in Google Scholar

[14] Kresty L.A., Howell A.B., Baird M., Cranberry proanthocyanidins induce apoptosis and inhibit acid-induced proliferation of human esophageal adenocarcinoma cells, J. Agric. Food Chem., 2008, 56, 676–680 http://dx.doi.org/10.1021/jf071997t10.1021/jf071997tSearch in Google Scholar PubMed

[15] Seeram N.P., Berry fruits for cancer prevention: current status and future prospects, J. Agric. Food Chem., 2008, 56, 630–635 http://dx.doi.org/10.1021/jf072504n10.1021/jf072504nSearch in Google Scholar PubMed

[16] Li W., Wei C., White P.J., Beta T., High-amylose corn exhibits better antioxidant activity than typical and waxy genotypes, J. Agric. Food Chem., 2007, 55, 291–298 http://dx.doi.org/10.1021/jf062243210.1021/jf0622432Search in Google Scholar PubMed

[17] Li W., Pickard M.D., Beta T., Evaluation of antioxidant activity and electronic taste and aroma properties of antho-beers from purple wheat grain, J. Agric. Food Chem., 2007, 55, 8958–8966 http://dx.doi.org/10.1021/jf071715p10.1021/jf071715pSearch in Google Scholar PubMed

[18] Guisti M.M., Wrolstad R.E., Characterization and measurement of anthocyanins by UV-visible spectroscopy, In: Wrolstad R.E., (Ed.), Current Protocols in Food Analytical Chemistry, John Wiley & Sons Inc, New York, 2000 10.1002/0471142913.faf0102s00Search in Google Scholar

[19] Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 1995, 28, 25–30 http://dx.doi.org/10.1016/S0023-6438(95)80008-510.1016/S0023-6438(95)80008-5Search in Google Scholar

[20] Li W., Pickard M.D., Beta T., Effect of thermal processing on antioxidant properties of purple wheat bran, Food Chem., 2007, 104, 1080–1086 http://dx.doi.org/10.1016/j.foodchem.2007.01.02410.1016/j.foodchem.2007.01.024Search in Google Scholar

[21] Garcia-Alonso F.J., Guidarelli A., Periago M.J., Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tertbutylhydroperoxide in U937 cells: the role of iron chelation, J. Nutr. Biochem., 2007, 18, 457–466 http://dx.doi.org/10.1016/j.jnutbio.2006.08.00310.1016/j.jnutbio.2006.08.003Search in Google Scholar PubMed

[22] Yi W., Akoh C.C., Fischer J., Krewer G., Effects of phenolic compounds in blueberries and muscadine grapes on HepG2 cell viability and apoptosis, Food Res. Int., 2006, 39, 628–638 http://dx.doi.org/10.1016/j.foodres.2006.01.00110.1016/j.foodres.2006.01.001Search in Google Scholar

[23] Kay C.D., Holub B.J., The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects, Br. J. Nutr., 2002, 88, 389–398 http://dx.doi.org/10.1079/BJN200266510.1079/BJN2002665Search in Google Scholar PubMed

[24] Kang S.Y., Seeram N.P., Nair M.G., Bourquin L.D., Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells, Cancer Lett., 2003, 194, 13–19 http://dx.doi.org/10.1016/S0304-3940(02)00583-910.1016/S0304-3940(02)00583-9Search in Google Scholar

[25] Cooke D., Schwarz M., Boocock D., Winterhalter P., Steward W.P., Gescher A.J., et al., Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis — Relationship with tissue anthocyanin levels, Int. J. Cancer, 2006, 119, 2213–2220 http://dx.doi.org/10.1002/ijc.2209010.1002/ijc.22090Search in Google Scholar PubMed

[26] Singletary K.W., Jung K.J., Giusti M., Anthocyaninrich grape extract blocks breast cell DNA damage, J. Med. Food, 2007, 10, 244–251 http://dx.doi.org/10.1089/jmf.2006.25810.1089/jmf.2006.258Search in Google Scholar PubMed

[27] Zhao C., Monica G., Malik M., Moyer M.P., Magnuson B.A., Effects of commercial anthocyaninrich extracts on colonic cancer and nontumorigenic colonic cell growth, J. Agric. Food Chem., 2004, 52, 6122–6128 http://dx.doi.org/10.1021/jf049517a10.1021/jf049517aSearch in Google Scholar PubMed

[28] Zhou K., Yu L., Antioxidant properties of bran extracts from Trego wheat grown at different locations, J. Agric. Food Chem., 2004, 52, 1112–1117 http://dx.doi.org/10.1021/jf030621m10.1021/jf030621mSearch in Google Scholar PubMed

[29] Onyeneho S.N., Hettiarachchy N.S., Antioxidant activity of durum wheat bran, J. Agric. Food Chem., 1992, 40, 1496–1500 http://dx.doi.org/10.1021/jf00021a00510.1021/jf00021a005Search in Google Scholar

[30] Villaño D., Fernández-Pachón M.S., Troncoso A.M., García-Parrilla M.C., Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro, Anal. Chim. Acta, 2005, 538, 391–398 http://dx.doi.org/10.1016/j.aca.2005.02.01610.1016/j.aca.2005.02.016Search in Google Scholar

[31] Sánchez-Moreno C., Larrauri J.A., Saura-Calixto F., A procedure of measure the antiradical efficiency of polyphenols, J. Sci. Food Agric., 1998, 76, 270–276 http://dx.doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-910.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9Search in Google Scholar

[32] Chung T.-W., Moon S.-K, Chang Y.-C, Ko J.-H., Lee Y.-C., Cho G., et al., Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism, FASEB J., 2004, 18, 1670–1681 http://dx.doi.org/10.1096/fj.04-2126com10.1096/fj.04-2126comSearch in Google Scholar

[33] Kang K.A, Lee K.H., Zhang R., Piao M., Chae S., Kim K.N., et al., Caffeic acid protects hydrogen peroxide induced cell damage in WI-38 human lung fibroblast cells, Biol. Pharm. Bull., 2006, 29, 1820–1824 http://dx.doi.org/10.1248/bpb.29.182010.1248/bpb.29.1820Search in Google Scholar

[34] Tanaka T., Kojima T., Kawamori T., Wang A., Suzui M., Okamoto K., et al., Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolic caffeic, ellagic, chlorogenic and ferulic acids, Carcinogenesis, 1993, 14, 1321–1325 http://dx.doi.org/10.1093/carcin/14.7.132110.1093/carcin/14.7.1321Search in Google Scholar

[35] Zhao Z., Moghadasian M.H., Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review, Food Chem., 2008, 109, 691–702 http://dx.doi.org/10.1016/j.foodchem.2008.02.03910.1016/j.foodchem.2008.02.039Search in Google Scholar

[36] Abdel-Wahab M.H., Ei-Mahdy M.A., Abd-Ellah M.F., Helal G.K., Khalifa F., Hamada F.M.A., Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart, Pharmacol Res., 2003, 48, 461–465 http://dx.doi.org/10.1016/S1043-6618(03)00214-710.1016/S1043-6618(03)00214-7Search in Google Scholar

[37] Luceri C., Giannini L., Lodovici M., Antonucci E., Abbate R., Masini E., et al., p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo, Br. J. Nutr., 2007, 97, 458–463 http://dx.doi.org/10.1017/S000711450765788210.1017/S0007114507657882Search in Google Scholar

[38] Yip E.C.H., Chan A.S.L., Pang H., Tam Y.K., Wong Y.H., Protocatechuic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism, Cell Biol. Toxicol., 2006, 22, 293–302 http://dx.doi.org/10.1007/s10565-006-0082-410.1007/s10565-006-0082-4Search in Google Scholar

[39] Faried A., Kurnia D., Faried L.S., Usman N., Miyazaki T., Kato H., et al, Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines, Int. J. Oncol., 2007, 30, 605–613 10.3892/ijo.30.3.605Search in Google Scholar

[40] Yoshioka K., Kataoka T., Hayashi T., Hasegawa M., Ishi Y., Hibasami H., Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines, Oncol. Rep., 2000, 7, 1221–1223 10.3892/or.7.6.1221Search in Google Scholar

[41] Ohno Y., Fukuda K., Takemura G., Toyota M., Watanabe M., Yasuda N., et al., Induction of apoptosis by gallic acid in lung cancer cells, Anti-Cancer Drugs, 1999, 10, 845–851 http://dx.doi.org/10.1097/00001813-199910000-0000810.1097/00001813-199910000-00008Search in Google Scholar PubMed

[42] Rastogi N., Goh K.S., Horgen L., Barrow W.W., Synergistic activities of antituberculous drugs with cerulenin and trans-cinnamic acid against mycobacterium tuberculosis, FEMS Immunol. Med. Microbiol., 1998, 21, 149–157 http://dx.doi.org/10.1111/j.1574-695X.1998.tb01161.x10.1111/j.1574-695X.1998.tb01161.xSearch in Google Scholar PubMed

Published Online: 2009-11-6
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-009-0041-1/html
Scroll to top button