Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2006

Non-invasive molecular imaging and reporter genes

  • Inna Serganova EMAIL logo , Ekaterina Moroz , Maxim Moroz , Nagavarakishore Pillarsetty and Ronald Blasberg
From the journal Open Life Sciences

Abstract

Molecular-genetic imaging in living organisms has become a new field with the exceptional growth over the past 5 years. Modern imaging is based on three technologies: nuclear, magnetic resonance and optical imaging. Most current molecular-genetic imaging strategies are “indirect,” coupling a “reporter gene” with a complimentary “reporter probe.” The reporter transgene usually encodes for an enzyme, receptor or transporter that selectively interacts with a radiolabeled probe and results in accumulation of radioactivity in the transduced cell. In addition, reporter systems based on the expression of fluorescence or bioluminescence proteins are becoming more widely applied in small animal imaging. This review begins with a description of Positron Emission Tomography (PET)-based imaging genes and their complimentary radiolabeled probes that we think will be the first to enter clinical trials. Then we describe other imaging genes, mostly for optical imaging, which have been developed by investigators working with a variety of disease models in mice. Such optical reporters are unlikely to enter the clinic, at least not in the near-term. Reporter gene constructs can be driven by constitutive promoter elements and used to monitor gene therapy vectors and the efficacy of gene targeting and transduction, as well as to monitor adoptive cell-based therapies. Inducible promoters can be used as “sensors” to monitor endogenous cell processes, including specific intracellular molecular-genetic events and the activity of signaling pathways, by regulating the magnitude of reporter gene expression.

[1] S. Forss-Petter, P.E. Danielson, S. Catsicas, E. Battenberg, J. Price, M. Nerenberg and J.G. Sutcliffe: “Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control”, Neuron, Vol. 5, (1990), pp. 187–197. http://dx.doi.org/10.1016/0896-6273(90)90308-310.1016/0896-6273(90)90308-3Search in Google Scholar

[2] P.A. Overbeek, A.B. Chepelinsky, J.S. Khillan, J. Piatigorsky and H. Westphal: “Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice”, Proc. Natl. Acad. Sci. U.S.A., Vol. 82, (1985), pp. 7815–7819. http://dx.doi.org/10.1073/pnas.82.23.781510.1073/pnas.82.23.7815Search in Google Scholar PubMed PubMed Central

[3] R. Blasberg: “Imaging gene expression and endogenous molecular processes: molecular imaging”, J. Cereb. Blood Flow Metab., Vol. 22, (2002), pp. 1157–1164. http://dx.doi.org/10.1097/00004647-200210000-0000110.1097/00004647-200210000-00001Search in Google Scholar

[4] S.S. Gambhir: “Molecular imaging of cancer with positron emission tomography”, Nat. Rev. Cancer, Vol. 2, (2002), pp. 683–693. http://dx.doi.org/10.1038/nrc88210.1038/nrc882Search in Google Scholar PubMed

[5] V. Ntziachristos, C.H. Tung, C. Bremer and R. Weissleder: “Fluorescence molecular tomography resolves protease activity in vivo”, Nat. Med., Vol. 8, (2002), pp. 757–760. http://dx.doi.org/10.1038/nm72910.1038/nm729Search in Google Scholar PubMed

[6] V. Ntziachristos, J. Ripoll, L.V. Wang and R. Weissleder: “Looking and listening to light: the evolution of whole-body photonic imaging”, Nat. Biotechnol., Vol. 23, (2005), pp. 313–320. http://dx.doi.org/10.1038/nbt107410.1038/nbt1074Search in Google Scholar PubMed

[7] G. Genove, U. DeMarco, H. Xu, W.F. Goins and E.T. Ahrens: “A new transgene reporter for in vivo magnetic resonance imaging”, Nat. Med., Vol. 11, (2005), pp. 450–454. http://dx.doi.org/10.1038/nm120810.1038/nm1208Search in Google Scholar PubMed

[8] R. Weissleder and V. Ntziachristos: “Shedding light onto live molecular targets”, Nat. Med., Vol. 9, (2003), pp. 123–128. http://dx.doi.org/10.1038/nm0103-12310.1038/nm0103-123Search in Google Scholar PubMed

[9] B.N. Chievitz and O.G. de Hevesy: “Radioactive indicators in the study of phosphorous metabolism in rats”, Nature, Vol. 1935, (1935), p. 754. Search in Google Scholar

[10] R.G. Blasberg and J.G. Tjuvajev: “Molecular-genetic imaging: current and future perspectives”, J. Clin. Invest., Vol. 111, (2003), pp. 1620–1629. http://dx.doi.org/10.1172/JCI20031885510.1172/JCI200318855Search in Google Scholar

[11] M. Doubrovin, I. Serganova, P. Mayer-Kuckuk, V. Ponomarev and R.G. Blasberg: “Multimodality in vivo molecular-genetic imaging”, Bioconjug. Chem., Vol. 15, (2004), pp. 1376–1388. http://dx.doi.org/10.1021/bc049857210.1021/bc0498572Search in Google Scholar PubMed

[12] J.G. Tjuvajev, A. Joshi, J. Callegari, L. Lindsley, R. Joshi, J. Balatoni, R. Finn, S.M. Larson, M. Sadelain and R.G. Blasberg: “A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase”, Neoplasia, Vol. 1, (1999), pp. 315–320. http://dx.doi.org/10.1038/sj.neo.790005310.1038/sj.neo.7900053Search in Google Scholar

[13] I. Serganova and R. Blasberg: “Reporter gene imaging: potential impact on therapy”, Nucl. Med. Biol. Vol. 32, (2005), pp. 763–780. http://dx.doi.org/10.1016/j.nucmedbio.2005.05.00810.1016/j.nucmedbio.2005.05.008Search in Google Scholar

[14] C.L. Brumley and J.A. Kuhn: “Radiolabeled monoclonal antibodies”, AORN J., Vol. 62, (1995), pp. 343–350, 353-345; quiz 356-348, 361-342. Search in Google Scholar

[15] Z. Tu, C.S. Dence, D.E. Ponde, L. Jones, K.T. Wheeler, M.J. Welch and R.H. Mach: “Carbon-11 labeled sigma2 receptor ligands for imaging breast cancer”, Nucl. Med. Biol., Vol. 32, (2005), pp. 423–430. http://dx.doi.org/10.1016/j.nucmedbio.2005.03.00810.1016/j.nucmedbio.2005.03.008Search in Google Scholar

[16] X. Chen, E. Sievers, Y. Hou, R. Park, M. Tohme, R. Bart, R. Bremner, J.R. Bading and P.S. Conti: “Integrin alpha v beta 3-targeted imaging of lung cancer”, Neoplasia, Vol. 7, (2005), pp. 271–279. Search in Google Scholar

[17] H.R. Herschman: “Noninvasive imaging of reporter gene expression in living subjects”, Adv. Cancer Res., Vol. 92, (2004), pp. 29–80. http://dx.doi.org/10.1016/S0065-230X(04)92003-910.1016/S0065-230X(04)92003-9Search in Google Scholar

[18] R.G. Blasberg: “Receptor binding radiotracers: personal history of the past 20 years”, Nucl. Med. Biol., Vol. 28, (2001), pp. 573–583. http://dx.doi.org/10.1016/S0969-8051(01)00212-810.1016/S0969-8051(01)00212-8Search in Google Scholar

[19] M.R. Acker and S.C. Burrell: “Utility of 18F-FDG PET in evaluating cancers of lung”, J. Nucl. Med. Technol., Vol. 33, (2005), pp. 69–74; quiz 75-67. Search in Google Scholar

[20] A. Quon and S.S. Gambhir: “FDG-PET and beyond: molecular breast cancer imaging”, J. Clin. Oncol., Vol. 23, (2005), pp. 1664–1673. http://dx.doi.org/10.1200/JCO.2005.11.02410.1200/JCO.2005.11.024Search in Google Scholar PubMed

[21] C.H. Contag, S.D. Spilman, P.R. Contag, M. Oshiro, B. Eames, P. Dennery, D.K. Stevenson and D.A. Benaron: “Visualizing gene expression in living mammals using a bioluminescent reporter”, Photochem. Photobiol., Vol. 66, (1997), pp. 523–531. Search in Google Scholar

[22] P.R. Contag, I.N. Olomu, D.K. Stevenson and C.H. Contag: “Bioluminescent indicators in living mammals”, Nat. Med., Vol. 4, (1998), pp. 245–247. http://dx.doi.org/10.1038/nm0298-24510.1038/nm0298-245Search in Google Scholar PubMed

[23] A. Rehemtulla, L.D. Stegman, S.J. Cardozo, S. Gupta, D.E. Hall, C.H. Contag and B.D. Ross: “Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging”, Neoplasia, Vol. 2, (2000), pp. 491–495. http://dx.doi.org/10.1038/sj.neo.790012110.1038/sj.neo.7900121Search in Google Scholar PubMed PubMed Central

[24] J.G. Tjuvajev, G. Stockhammer, R. Desai, H. Uehara, K. Watanabe, B. Gansbacher and R.G. Blasberg: “Imaging the expression of transfected genes in vivo”, Cancer Res., Vol. 55, (1995), pp. 6126–6132. Search in Google Scholar

[25] J.G. Tjuvajev, R. Finn, K. Watanabe, R. Joshi, T. Oku, J. Kennedy, B. Beattie, J. Koutcher, S. Larson and R.G. Blasberg: “Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy”, Cancer Res., Vol. 56, (1996), pp. 4087–4095. Search in Google Scholar

[26] J.G. Tjuvajev, N. Avril, T. Oku, T. Sasajima, T. Miyagawa, R. Joshi, M. Safer, B. Beattie, G. DiResta, F. Daghighian, F. Augensen, J. Koutcher, J. Zweit, J. Humm, S.M. Larson, R. Finn and R. Blasberg: “Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography”, Cancer Res., Vol. 58, (1998), pp. 4333–4341. Search in Google Scholar

[27] S.S. Gambhir, J.R. Barrio, M.E. Phelps, M. Iyer, M. Namavari, N. Satyamurthy, L. Wu, L.A. Green, E. Bauer, D.C. MacLaren, K. Nguyen, A.J. Berk, S.R. Cherry and H.R. Herschman: “Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography”, Proc. Natl. Acad. Sci. U.S.A., Vol. 96, (1999), pp. 2333–2338. http://dx.doi.org/10.1073/pnas.96.5.233310.1073/pnas.96.5.2333Search in Google Scholar PubMed PubMed Central

[28] S.S. Gambhir, J.R. Barrio, L. Wu, M. Iyer, M. Namavari, N. Satyamurthy, E. Bauer, C. Parrish, D.C. MacLaren, A.R. Borghei, L.A. Green, S. Sharfstein, A.J. Berk, S.R. Cherry, M.E. Phelps and H.R. Herschman: “Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir”, J. Nucl. Med., Vol. 39, (1998), pp. 2003–2011. Search in Google Scholar

[29] R. Weissleder, M. Simonova, A. Bogdanova, S. Bredow, W.S. Enochs and A. Bogdanov Jr.: “MR imaging and scintigraphy of gene expression through melanin induction”, Radiology, Vol. 204, (1997), pp. 425–429. Search in Google Scholar

[30] A.Y. Louie, M.M. Huber, E.T. Ahrens, U. Rothbacher, R. Moats, R.E. Jacobs, S.E. Fraser and T.J. Meade: “In vivo visualization of gene expression using magnetic resonance imaging”, Nat. Biotechnol., Vol. 18, (2000), pp. 321–325. http://dx.doi.org/10.1038/7378010.1038/73780Search in Google Scholar PubMed

[31] K.R. Zinn and T.R. Chaudhuri: “The type 2 human somatostatin receptor as a platform for reporter gene imaging”, Eur. J. Nucl. Med. Mol. Imaging., Vol. 29, (2002), pp. 388–399. http://dx.doi.org/10.1007/s00259-002-0764-y10.1007/s00259-002-0764-ySearch in Google Scholar

[32] A. Boland, M. Ricard, P. Opolon, J.M. Bidart, P. Yeh, S. Filetti, M. Schlumberger and M. Perricaudet: “Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy”, Cancer Research, Vol. 60, (2000), pp. 3484–3492. Search in Google Scholar

[33] J.C. March, G. Rao and W.E. Bentley: “Biotechnological applications of green fluorescent protein”, Appl. Microbiol. Biotechnol., Vol. 62, (2003), pp. 303–315. http://dx.doi.org/10.1007/s00253-003-1339-y10.1007/s00253-003-1339-ySearch in Google Scholar

[34] R.M. Hoffman: “Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging”, J. Biomed. Opt.,Vol. 10, (2005), p. 41202. http://dx.doi.org/10.1117/1.199248510.1117/1.1992485Search in Google Scholar

[35] A.D. Van den Abbeele and R.D. Badawi: “Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs)”, Eur. J. Cancer, Vol. 38(Suppl 5), (2002), pp. S60–S65. Search in Google Scholar

[36] J.A. Fyfe, P.M. Keller, P.A. Furman, R.L. Miller and G.B. Elion: “Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine”, J. Biol. Chem. Vol. 253, (1978), pp. 8721–8727. Search in Google Scholar

[37] D. Klatzmann, P. Cherin, G. Bensimon, O. Boyer, A. Coutellier, F. Charlotte, C. Boccaccio, J.L. Salzmann and S. Herson: “A phase I/II dose-escalation study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for metastatic melanoma. Study Group on Gene Therapy of Metastatic Melanoma”, Hum. Gene Ther., Vol. 9, (1998), pp. 2585–2594. http://dx.doi.org/10.1089/1043034985001942710.1089/10430349850019427Search in Google Scholar

[38] Z. Ram, K.W. Culver, E.M. Oshiro, J.J. Viola, H.L. De Vroom, E. Otto, Z. Long, Y. Chiang, G.J. McGarrity, L.M. Muul, D. Katz, R.M. Blaese and E.H. Oldfield: “Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells”, Nat. Med., Vol. 3, (1997), pp. 1354–1361. http://dx.doi.org/10.1038/nm1297-135410.1038/nm1297-1354Search in Google Scholar

[39] Y. Saito, R.W. Price, D.A. Rottenberg, J.J. Fox, T.L. Su, K.A. Watanabe and F.S. Philips: “Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug”, Science, Vol. 217, (1982), pp. 1151–1153. Search in Google Scholar

[40] A. Jacobs, J. Voges, R. Reszka, M. Lercher, A. Gossmann, L. Kracht, C. Kaestle, R. Wagner, K. Wienhard and W.D. Heiss: “Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas”, Lancet, Vol. 358, (2001), pp. 727–729. http://dx.doi.org/10.1016/S0140-6736(01)05904-910.1016/S0140-6736(01)05904-9Search in Google Scholar

[41] M.M. Alauddin and P.S. Conti: “Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET”, Nucl. Med. Biol., Vol. 25, (1998), pp. 175–180. http://dx.doi.org/10.1016/S0969-8051(97)00160-110.1016/S0969-8051(97)00160-1Search in Google Scholar

[42] M. Iyer, J.R. Barrio, M. Namavari, E. Bauer, N. Satyamurthy, K. Nguyen, T. Toyokuni, M.E. Phelps, H.R. Herschman and S.S. Gambhir: “8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET”, J. Nucl. Med., Vol. 42, (2001), pp. 96–105. Search in Google Scholar

[43] S.S. Gambhir, E. Bauer, M.E. Black, Q. Liang, M.S. Kokoris, J.R. Barrio, M. Iyer, M. Namavari, M.E. Phelps and H.R. Herschman: “A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography”, Proc. Natl. Acad. Sci. U.S.A., Vol. 97, (2000), pp. 2785–2790. http://dx.doi.org/10.1073/pnas.97.6.278510.1073/pnas.97.6.2785Search in Google Scholar PubMed PubMed Central

[44] S.S. Yaghoubi, J.R. Barrio, M. Namavari, N. Satyamurthy, M.E. Phelps, H.R. Herschman and S.S. Gambhir: “Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography”, Cancer Gene Ther., Vol. 12, (2005), pp. 329–339. http://dx.doi.org/10.1038/sj.cgt.770079510.1038/sj.cgt.7700795Search in Google Scholar PubMed

[45] I. Penuelas, G. Mazzolini, J.F. Boan, B. Sangro, J. Marti-Climent, M. Ruiz, J. Ruiz, N. Satyamurthy, C. Qian, J.R. Barrio, M.E. Phelps, J.A. Richter, S.S. Gambhir and J. Prieto: “Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients”, Gastroenterology, Vol. 128, (2005), pp. 1787–1795. http://dx.doi.org/10.1053/j.gastro.2005.03.02410.1053/j.gastro.2005.03.024Search in Google Scholar PubMed

[46] I. Penuelas, U. Haberkorn, S. Yaghoubi and S.S. Gambhir: “Gene therapy imaging in patients for oncological applications”, Eur. J. Nucl. Med. Mol. Imaging Suppl. 2, (2005), pp. s384–403. http://dx.doi.org/10.1007/s00259-005-1928-310.1007/s00259-005-1928-3Search in Google Scholar

[47] M. Doubrovin, V. Ponomarev, T. Beresten, J. Balatoni, W. Bornmann, R. Finn, J. Humm, S. Larson, M. Sadelain, R. Blasberg and J. Gelovani Tjuvajev: “Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo”, Proc. Natl. Acad. Sci. U.S.A., Vol. 98, (2001), pp. 9300–9305. http://dx.doi.org/10.1073/pnas.16109119810.1073/pnas.161091198Search in Google Scholar

[48] I. Serganova, M. Doubrovin, J. Vider, V. Ponomarev, S. Soghomonyan, T. Beresten, L. Ageyeva, A. Serganov, S. Cai, J. Balatoni, R. Blasberg and J. Gelovani: “Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice”, Cancer Res., Vol. 64, (2004), pp. 6101–6108. http://dx.doi.org/10.1158/0008-5472.CAN-04-084210.1158/0008-5472.CAN-04-0842Search in Google Scholar

[49] Y. Kang, W. He, S. Tulley, G.P. Gupta, I. Serganova, C.R. Chen, K. Manova-Todorova, R. Blasberg, W.L. Gerald and J. Massague: “Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway”, Proc. Natl. Acad. Sci. U.S.A., Vol. 102, (2005), pp. 13909–13914. http://dx.doi.org/10.1073/pnas.050651710210.1073/pnas.0506517102Search in Google Scholar

[50] P. Mayer-Kuckuk, M. Doubrovin, N.J. Gusani, T. Gade, J. Balatoni, T. Akhurst, R. Finn, Y. Fong, J.A. Koutcher, S. Larson, R. Blasberg, J.G. Tjuvajev, J.R. Bertino and D. Banerjee: “Imaging of dihydrofolate reductase fusion gene expression in xenografts of human liver metastases of colorectal cancer in living rats”, Eur. J. Nucl. Med. Mol. Imaging., Vol. 30, (2003), pp. 1281–1291. http://dx.doi.org/10.1007/s00259-003-1143-z10.1007/s00259-003-1143-zSearch in Google Scholar

[51] P. Mayer-Kuckuk, D. Banerjee, S. Malhotra, M. Doubrovin, M. Iwamoto, T. Akhurst, J. Balatoni, W. Bornmann, R. Finn, S. Larson, Y. Fong, J. Gelovani Tjuvajev, R. Blasberg and J.R. Bertino: “Cells exposed to antifolates show increased cellular levels of proteins fused to dihydrofolate reductase:a method to modulate gene expression”, Proc. Natl. Acad. Sci. U.S.A., Vol. 99, (2002), pp. 3400–3405. http://dx.doi.org/10.1073/pnas.06203689910.1073/pnas.062036899Search in Google Scholar

[52] A.H. Gobuty, R.G. Robinson and R.F. Barth: “Organ distribution of 99mTc-and 51Cr-labeled autologous peripheral blood lymphocytes in rabbits”, J. Nucl. Med., Vol. 18, (1977), pp. 141–146. Search in Google Scholar

[53] C.K. Papierniak, R.E. Bourey, R.R. Kretschmer, S.P. Gotoff and L.G. Colombetti: “Technetium-99m labeling of human monocytes for chemotactic studies”, J. Nucl. Med., Vol. 17, (1976), pp. 988–992. Search in Google Scholar

[54] J. Korf, L. Veenma-van der Duin, R. Brinkman-Medema, A. Niemarkt and L.F. de Leij: “Divalent cobalt as a label to study lymphocyte distribution using PET and SPECT”, J. Nucl. Med., Vol. 39, (1998), pp. 836–841. Search in Google Scholar

[55] G.H. Rannie, M.L. Thakur and W.L. Ford: “An experimental comparison of radioactive labels with potential application to lymphocyte migration studies in patients”, Clin. Exp. Immunol., Vol. 29, (1977), pp. 509–514. Search in Google Scholar

[56] N. Adonai, K.N. Nguyen, J. Walsh, M. Iyer, T. Toyokuni, M.E. Phelps, T. Mc-Carthy, D.W. McCarthy and S.S. Gambhir: “Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography”, Proc. Natl. Acad. Sci. U.S.A., Vol. 99, (2002), pp. 3030–3035. http://dx.doi.org/10.1073/pnas.05270959910.1073/pnas.052709599Search in Google Scholar

[57] A.B. Hagani, I. Riviere, C. Tan, A. Krause and M. Sadelain: “Activation conditions determine susceptibility of murine primary T-lymphocytes to retroviral infection”, J. Gene Med., Vol. 1, (1999), pp. 341–351. http://dx.doi.org/10.1002/(SICI)1521-2254(199909/10)1:5<341::AID-JGM58>3.0.CO;2-J10.1002/(SICI)1521-2254(199909/10)1:5<341::AID-JGM58>3.0.CO;2-JSearch in Google Scholar

[58] H.F. Gallardo, C. Tan, D. Ory and M. Sadelain: “Recombinant retroviruses pseudo-typed with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes”, Blood, Vol. 90, (1997), pp. 952–957. Search in Google Scholar

[59] C.M. Rooney, C.A. Smith, C.Y. Ng, S. Loftin, C. Li, R.A. Krance, M.K. Brenner and H.E. Heslop: “Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation”, Lancet, Vol. 345, (1995), pp. 9–13. http://dx.doi.org/10.1016/S0140-6736(95)91150-210.1016/S0140-6736(95)91150-2Search in Google Scholar

[60] S. Verzeletti, C. Bonini, S. Marktel, N. Nobili, F. Ciceri, C. Traversari and C. Bordignon: “Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors”, Hum. Gene Ther., Vol. 9, (1998), pp. 2243–2251. Search in Google Scholar

[61] C. Bonini, G. Ferrari, S. Verzeletti, P. Servida, E. Zappone, L. Ruggieri, M. Ponzoni, S. Rossini, F. Mavilio, C. Traversari and C. Bordignon: “HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia”, Science, Vol. 276, (1997), pp. 1719–1724. http://dx.doi.org/10.1126/science.276.5319.171910.1126/science.276.5319.1719Search in Google Scholar

[62] J. Hardy, M. Edinger, M.H. Bachmann, R.S. Negrin, C.G. Fathman and C.H. Contag: “Bioluminescence imaging of lymphocyte trafficking in vivo”, Exp. Hematol., Vol. 29, (2001), pp. 1353–1360. http://dx.doi.org/10.1016/S0301-472X(01)00756-110.1016/S0301-472X(01)00756-1Search in Google Scholar

[63] W. Zhang, J.Q. Feng, S.E. Harris, P.R. Contag, D.K. Stevenson and C.H. Contag: “Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression”, Transgenic Res, Vol. 10, (2001), pp. 423–434. http://dx.doi.org/10.1023/A:101204250600210.1023/A:1012042506002Search in Google Scholar

[64] G. Koehne, M. Doubrovin, E. Doubrovina, P. Zanzonico, H.F. Gallardo, A. Ivanova, J. Balatoni, J. Teruya-Feldstein, G. Heller, C. May, V. Ponomarev, S. Ruan, R. Finn, R.G. Blasberg, W. Bornmann, I. Riviere, M. Sadelain, R.J. O’Reilly, S.M. Larson and J.G. Tjuvajev: “Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes”, Nat. Biotechnol., Vol. 21, (2003), pp. 405–413. http://dx.doi.org/10.1038/nbt80510.1038/nbt805Search in Google Scholar PubMed

[65] G. Dai, O. Levy and N. Carrasco: “Cloning and characterization of the thyroid iodide transporter”, Nature, Vol. 379, (1996), pp. 458–460. http://dx.doi.org/10.1038/379458a010.1038/379458a0Search in Google Scholar PubMed

[66] S. Selmi-Ruby, C. Watrin, S. Trouttet-Masson, F. Bernier-Valentin, V. Flachon, Y. Munari-Silem and B. Rousset: “The porcine sodium/iodide symporter gene exhibits an uncommon expression pattern related to the use of alternative splice sites not present in the human or murine species”, Endocrinology, Vol. 144, (2003), pp. 1074–1085. http://dx.doi.org/10.1210/en.2002-22097110.1210/en.2002-220971Search in Google Scholar PubMed

[67] U.H. Tazebay, I.L. Wapnir, O. Levy, O. Dohan, L.S. Zuckier, Q.H. Zhao, H.F. Deng, P.S. Amenta, S. Fineberg, R.G. Pestell and N. Carrasco: “The mammary gland iodide transporter is expressed during lactation and in breast cancer”, Nat. Med., Vol. 6, (2000), pp. 871–878. http://dx.doi.org/10.1038/7863010.1038/78630Search in Google Scholar PubMed

[68] S. Eskandari, D.D. Loo, G. Dai, O. Levy, E.M. Wright and N. Carrasco: “Thyroid Na+/I-symporter. Mechanism, stoichiometry and specificity”, J. Biol. Chem., Vol. 272, (1997), pp. 27230–27238. http://dx.doi.org/10.1074/jbc.272.43.2723010.1074/jbc.272.43.27230Search in Google Scholar PubMed

[69] J. Van Sande, C. Massart, R. Beauwens, A. Schoutens, S. Costagliola, J.E. Dumont and J. Wolff: “Anion selectivity by the sodium iodide symporter”, Endocrinology, Vol. 144, (2003), pp. 247–252. http://dx.doi.org/10.1210/en.2002-22074410.1210/en.2002-220744Search in Google Scholar PubMed

[70] J. Che, M. Doubrovin, I. Serganova, L. Ageyeva, P. Zanzonico and R. Blasberg: “hNIS-IRES-eGFP dual reporter gene imaging”, Mol. Imaging, Vol. 4, (2005), pp. 128–136. Search in Google Scholar

[71] H. Kakinuma, E.R. Bergert, C. Spitzweg, J.C. Cheville, M.M. Lieber and J.C. Morris: “Probasin promoter (ARR(2)PB)-driven, prostate-specific expression of the human sodium iodide symporter (h-NIS) for targeted radioiodine therapy of prostate cancer”, Cancer Res., Vol. 63, (2003), pp. 7840–7844. Search in Google Scholar

[72] M.L. Schipper, A. Weber, M. Behe, R. Goke, W. Joba, H. Schmidt, T. Bert, B. Simon, R. Arnold, A.E. Heufelder and T.M. Behr: “Radioiodide treatment after sodium iodide symporter gene transfer is a highly effective therapy in neuroen-docrine tumor cells”, Cancer Res., Vol. 63, (2003), pp. 1333–1338. Search in Google Scholar

[73] D. Dingli, K.W. Peng, M.E. Harvey, P.R. Greipp, M.K. O’Connor, R. Cattaneo, J.C. Morris and S.J. Russell: “Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter”, Blood, Vol. 103, (2004), pp. 1641–1646. http://dx.doi.org/10.1182/blood-2003-07-223310.1182/blood-2003-07-2233Search in Google Scholar PubMed

[74] M. Huang, R.K. Batra, T. Kogai, Y.Q. Lin, J.M. Hershman, A. Lichtenstein, S. Sharma, L.X. Zhu, G.A. Brent and S.M. Dubinett: “Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer”, Cancer Gene Ther., Vol. 8, (2001), pp. 612–618. http://dx.doi.org/10.1038/sj.cgt.770035410.1038/sj.cgt.7700354Search in Google Scholar PubMed PubMed Central

[75] D. Dingli, R.M. Diaz, E.R. Bergert, M.K. O’Connor, J.C. Morris and S.J. Russell: “Genetically targeted radiotherapy for multiple myeloma”, Blood, Vol. 102, (2003), pp. 489–496. http://dx.doi.org/10.1182/blood-2002-11-339010.1182/blood-2002-11-3390Search in Google Scholar PubMed

[76] D.J. Buchsbaum, T.R. Chaudhuri and K.R. Zinn: “Radiotargeted gene therapy”, J. Nucl. Med., Vol. 46(Suppl. 1), (2005), pp. 179S–186S. Search in Google Scholar

[77] D.J. Buchsbaum and D.T. Curiel: “Gene therapy for the treatment of cancer”, Cancer Biother. Radiopharm., Vol. 16, (2001), pp. 275–288. http://dx.doi.org/10.1089/10849780175313135410.1089/108497801753131354Search in Google Scholar PubMed

[78] M. Miyagawa, M. Beyer, B. Wagner, M. Anton, C. Spitzweg, B. Gansbacher, M. Schwaiger and F.M. Bengel: “Cardiac reporter gene imaging using the human sodium/iodide symporter gene”, Cardiovasc. Res., Vol. 65, (2005), pp. 195–202. http://dx.doi.org/10.1016/j.cardiores.2004.10.00110.1016/j.cardiores.2004.10.001Search in Google Scholar PubMed

[79] K.I. Kim, J.K. Chung, J.H. Kang, Y.J. Lee, J.H. Shin, H.J. Oh, J.M. Jeong, D.S. Lee and M.C. Lee: “Visualization of endogenous p53-mediated transcription in vivo using sodium iodide symporter”, Clin. Cancer Res”,, Vol. 11, (2005), pp. 123–128. Search in Google Scholar

[80] J. Faivre, J. Clerc, R. Gerolami, J. Herve, M. Longuet, B. Liu, J. Roux, F. Moal, M. Perricaudet and C. Brechot: “Long-term radioiodine retention and regression of liver cancer after sodium iodide symporter gene transfer in wistar rats”, Cancer Res, Vol. 64, (2004), pp. 8045–8051. http://dx.doi.org/10.1158/0008-5472.CAN-04-089310.1158/0008-5472.CAN-04-0893Search in Google Scholar PubMed

[81] K.H. Lee, H.K. Kim, J.Y. Paik, T. Matsui, Y.S. Choe, Y. Choi and B.T. Kim: “Accuracy of myocardial sodium/iodide symporter gene expression imaging with radioiodide: evaluation with a dual-gene adenovirus vector”, J. Nucl. Med., Vol. 46, (2005), pp. 652–657. Search in Google Scholar

[82] J.H. Shin, J.K. Chung, J.H. Kang, Y.J. Lee, K.I. Kim, Y. So, J.M. Jeong, D.S. Lee and M.C. Lee: “Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene”, J. Nucl. Med., Vol. 45, (2004), pp. 2109–2115. Search in Google Scholar

[83] M.K. So, J.H. Kang, J.K. Chung, Y.J. Lee, J.H. Shin, K.I. Kim, J.M. Jeong, D.S. Lee and M.C. Lee: “In vivo imaging of retinoic acid receptor activity using a sodium/iodide symporter and luciferase dual imaging reporter gene”, Mol. Imaging, Vol. 3, (2004), pp. 163–171. http://dx.doi.org/10.1162/153535004238030810.1162/1535350042380308Search in Google Scholar PubMed

[84] J.H. Kang, D.S. Lee, J.C. Paeng, J.S. Lee, Y.H. Kim, Y.J. Lee, W. Hwang Do, J.M. Jeong, S.M. Lim, J.K. Chung and M.C. Lee: “Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression”, J. Nucl. Med., Vol. 46, (2005), pp. 479–483. Search in Google Scholar

[85] R. Buursma, A.M. Beerens, E.F. de Vries, A. van Waarde, M.G. Rots, G.A. Hospers, W. Vaalburg and H.J. Haisma: “The Human Norepinephrine Transporter in Combination with 11C-m-Hydroxyephedrine as a Reporter Gene/Reporter Probe for PET of Gene Therapy”, J. Nucl. Med., Vol. 46, (2005), pp. 2068–2075. Search in Google Scholar

[86] Altmann, M. Kissel, S. Zitzmann, W. Kubler, M. Mahmut, P. Peschke and U. Haberkorn: “Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma”, J. Nucl. Med., Vol. 44, (2003), pp. 973–980. Search in Google Scholar

[87] T. Pacholczyk, R.D. Blakely and S.G. Amara: “Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter”, Nature, Vol. 350, (1991), pp. 350–354. http://dx.doi.org/10.1038/350350a010.1038/350350a0Search in Google Scholar PubMed

[88] S. Kitayama, T. Ikeda, C. Mitsuhata, T. Sato, K. Morita and T. Dohi: “Dominant negative isoform of rat norepinephrine transporter produced by alternative RNA splicing”, J. Biol. Chem., Vol. 274, (1999), pp. 10731–10736. http://dx.doi.org/10.1074/jbc.274.16.1073110.1074/jbc.274.16.10731Search in Google Scholar PubMed

[89] J.D. Fritz, L.D. Jayanthi, M.A. Thoreson and R.D. Blakely: “Cloning and chromosomal mapping of the murine norepinephrine transporter”, J. Neurochem., Vol. 70, (1998), pp. 2241–2251. http://dx.doi.org/10.1046/j.1471-4159.1998.70062241.x10.1046/j.1471-4159.1998.70062241.xSearch in Google Scholar PubMed

[90] M. Bruss, J. Kunz, B. Lingen and H. Bonisch: “Chromosomal mapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter”, Hum. Genet., Vol. 91, (1993), pp. 278–280. Search in Google Scholar

[91] P. Porzgen, H. Bonisch and M. Bruss: “Molecular cloning and organization of the coding region of the human norepinephrine transporter gene”, Biochem. Biophys. Res. Commun., Vol. 215, (1995), pp. 1145–1150. http://dx.doi.org/10.1006/bbrc.1995.258210.1006/bbrc.1995.2582Search in Google Scholar PubMed

[92] P. Porzgen, H. Bonisch and M. Bruss: “Molecular cloning and organization of the coding region of the human norepinephrine transporter gene”, Biochem. Biophys. Res. Commun., Vol. 227, (1996), pp. 642–643. http://dx.doi.org/10.1006/bbrc.1996.155910.1006/bbrc.1996.1559Search in Google Scholar PubMed

[93] B. Lingen, M. Bruss and H. Bonisch: “Cloning and expression of the bovine sodium-and chloride-dependent noradrenaline transporter”, FEBS Lett., Vol. 342, (1994), pp. 235–238. http://dx.doi.org/10.1016/0014-5793(94)80508-310.1016/0014-5793(94)80508-3Search in Google Scholar

[94] L.D. Burton, A.G. Kippenberger, B. Lingen, M. Bruss, H. Bonisch and D.L. Christie: “A variant of the bovine noradrenaline transporter reveals the importance of the C-terminal region for correct targeting to the membrane and functional expression”, Biochem. J., Vol. 330(Pt 2), (1998), pp. 909–914. Search in Google Scholar

[95] S. Kitayama, K. Morita and T. Dohi: “Functional characterization of the splicing variants of human norepinephrine transporter”, Neurosci. Lett., Vol. 312, (2001), pp. 108–112. http://dx.doi.org/10.1016/S0304-3940(01)02138-310.1016/S0304-3940(01)02138-3Search in Google Scholar

[96] Y. Zhao and L. Sun: “Perinatal cocaine exposure reduces myocardial norepinephrine transporter function in the neonatal rat”, Neurotoxicol. Teratol., Vol. 26, (2004), pp. 443–450. http://dx.doi.org/10.1016/j.ntt.2004.01.01110.1016/j.ntt.2004.01.011Search in Google Scholar

[97] G. Eisenhofer: “The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines”, Pharmacol. Ther., Vol. 91, (2001), pp. 35–62. http://dx.doi.org/10.1016/S0163-7258(01)00144-910.1016/S0163-7258(01)00144-9Search in Google Scholar

[98] O. Langer, F. Dolle, H. Valette, C. Halldin, F. Vaufrey, C. Fuseau, C. Coulon, M. Ottaviani, K. Nagren, M. Bottlaender, B. Maziere and C. Crouzel: “Synthesis of high-specific-radioactivity 4-and 6-[18F]fluorometaraminol-PET tracers for the adrenergic nervous system of the heart”, Bioorg. Med. Chem., Vol. 9, (2001), pp. 677–694. http://dx.doi.org/10.1016/S0968-0896(00)00286-810.1016/S0968-0896(00)00286-8Search in Google Scholar

[99] M. Wieland, J. Wu, L.E. Brown, T.J. Mangner, D.P. Swanson and W.H. Beierwaltes: “Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine”, J. Nucl. Med., Vol. 21, (1980), pp. 349–353. Search in Google Scholar

[100] R. Wafelman, C.A. Hoefnagel, R.A. Maes and J.H. Beijnen: “Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry”, Eur. J. Nucl. Med., Vol. 21, (1994), pp. 545–559. http://dx.doi.org/10.1007/BF0017304310.1007/BF00173043Search in Google Scholar

[101] M. Anton, B. Wagner, R. Haubner, C. Bodenstein, B.E. Essien, H. Bonisch, M. Schwaiger, B. Gansbacher and W.A. Weber: “Use of the norepinephrine transporter as a reporter gene for non-invasive imaging of genetically modified cells”, J. Gene Med., Vol. 6, (2004), pp. 119–126. http://dx.doi.org/10.1002/jgm.47210.1002/jgm.472Search in Google Scholar

[102] J.V. Glowniak, J.E. Kilty, S.G. Amara, B.J. Hoffman and F.E. Turner: “Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters”, J. Nucl. Med., Vol. 34, (1993), pp. 1140–1146. Search in Google Scholar

[103] M. Boyd, S.H. Cunningham, M.M. Brown, R.J. Mairs and T.E. Wheldon: “Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine”, Gene Ther., Vol. 6, (1999), pp. 1147–1152. http://dx.doi.org/10.1038/sj.gt.330090510.1038/sj.gt.3300905Search in Google Scholar

[104] H.E. Melikian, S. Ramamoorthy, C.G. Tate and R.D. Blakely: “Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking and transport activity but not ligand recognition”, Mol. Pharmacol., Vol. 50, (1996), pp. 266–276. Search in Google Scholar

[105] S. Shouda, C. Kurata, T. Mikami and Y. Wakabayashi: “Effects of extrinsically elevated plasma norepinephrine concentration on myocardial 123I-MIBG kinetics in rats”, J. Nucl. Med., Vol. 40, (1999), pp. 2088–2093. Search in Google Scholar

[106] P.C. Wang, N.T. Buu, O. Kuchel and J. Genest: “Conjugation patterns of endogenous plasma catecholamines in human and rat: “A new specific method for analysis of glucuronide-conjugated catecholamines”, J. Lab. Clin. Med., Vol. 101, (1983), pp. 141–151. Search in Google Scholar

[107] O. Kifor, F.D. Moore Jr., M. Delaney, J. Garber, G.N. Hendy, R. Butters, P. Gao, T.L. Cantor, I. Kifor, E.M. Brown and J. Wysolmerski: “A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor”, J. Clin. Endocrinol. Metab., Vol. 88, (2003), pp. 60–72. http://dx.doi.org/10.1210/jc.2002-02024910.1210/jc.2002-020249Search in Google Scholar

[108] K.C. Allman, D.M. Wieland, O. Muzik, T.R. Degrado, E.R. Wolfe Jr. and M. Schwaiger: “Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans”, J. Am. Coll. Cardiol., Vol. 22, (1993), pp. 368–375. http://dx.doi.org/10.1016/0735-1097(93)90039-410.1016/0735-1097(93)90039-4Search in Google Scholar

[109] Trampal, H. Engler, C. Juhlin, M. Bergstrom and B. Langstrom: “Pheochromocytomas: detection with 11C hydroxyephedrine PET”, Radiology, Vol. 230, (2004), pp. 423–428. Search in Google Scholar

[110] L. Krulich, A.P. Dhariwal and S.M. McCann: “Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro”, Endocrinology, Vol. 83, (1968), pp. 783–790. http://dx.doi.org/10.1210/endo-83-4-78310.1210/endo-83-4-783Search in Google Scholar

[111] P. Brazeau, W. Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier and R. Guillemin: “Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone”, Science, Vol. 179, (1973), pp. 77–79. Search in Google Scholar

[112] S. Reichlin: “Somatostatin”, N. Engl. J. Med., Vol. 309, (1983), pp. 1495–1501. http://dx.doi.org/10.1056/NEJM19831215309240610.1056/NEJM198312153092406Search in Google Scholar

[113] J.C. Reubi, L. Kvols, E. Krenning and S.W. Lamberts: “Distribution of somatostatin receptors in normal and tumor tissue”, Metabolism, Vol. 39, (1990), pp. 78–81. http://dx.doi.org/10.1016/0026-0495(90)90217-Z10.1016/0026-0495(90)90217-ZSearch in Google Scholar

[114] W. Bauer, U. Briner, W. Doepfner, R. Haller, R. Huguenin, P. Marbach, T.J. Petcher and Pless: “SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action”, Life Sci., Vol. 31, (1982), pp. 1133–1140. http://dx.doi.org/10.1016/0024-3205(82)90087-X10.1016/0024-3205(82)90087-XSearch in Google Scholar

[115] K.P. Eisenwiener, M.I. Prata, I. Buschmann, H.W. Zhang, A.C. Santos, S. Wenger, J.C. Reubi and H.R. Macke: “NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors”, Bioconjug. Chem., Vol. 13, (2002), pp. 530–541. http://dx.doi.org/10.1021/bc010074f10.1021/bc010074fSearch in Google Scholar

[116] Y. Menda and D. Kahn: “Somatostatin receptor imaging of non-small cell lung cancer with 99mTc depreotide”, Semin. Nucl. Med., Vol. 32, (2002), pp. 92–96. http://dx.doi.org/10.1053/snuc.2002.3156410.1053/snuc.2002.31564Search in Google Scholar

[117] K.R. Zinn, D.J. Buchsbaum, T.R. Chaudhuri, J.M. Mountz, W.E. Grizzle and B.E. Rogers: “Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re”, J. Nucl. Med., Vol. 41, (2000), pp. 887–895. Search in Google Scholar

[118] B.E. Rogers, J.J. Parry, R. Andrews, P. Cordopatis, B.A. Nock and T. Maina: “MicroPET Imaging of Gene Transfer with a Somatostatin Receptor-Based Reporter Gene and 94mTc-Demotate 1”, J. Nucl. Med., Vol. 46, (2005), pp. 1889–1897. Search in Google Scholar

[119] R. Sibley and F.J. Monsma Jr.: “Molecular biology of dopamine receptors”, Trends Pharmacol. Sci., Vol. 13, (1992), pp. 61–69. http://dx.doi.org/10.1016/0165-6147(92)90025-210.1016/0165-6147(92)90025-2Search in Google Scholar

[120] J.R. Bunzow, H.H. Van Tol, D.K. Grandy, P. Albert, J. Salon, M. Christie, C.A. Machida, K.A. Neve and O. Civelli: “Cloning and expression of a rat D2 dopamine receptor cDNA”, Nature, Vol. 336, (1988), pp. 783–787. http://dx.doi.org/10.1038/336783a010.1038/336783a0Search in Google Scholar

[121] N. Satyamurthy, J.R. Barrio, G.T. Bida, S.C. Huang, J.C. Mazziotta and M.E. Phelps: “3-(2′-[18F]fluoroethyl)spiperone, a potent dopamine antagonist: synthesis, structural analysis and in-vivo utilization in humans”, Int. J. Rad. Appl. Instrum. A, Vol. 41, (1990), pp. 113–129. http://dx.doi.org/10.1016/0883-2889(90)90096-Y10.1016/0883-2889(90)90096-YSearch in Google Scholar

[122] J.R. Barrio, N. Satyamurthy, S.C. Huang, R.E. Keen, C.H. Nissenson, J.M. Hoffman, R.F. Ackermann, M.M. Bahn, J.C. Mazziotta and M.E. Phelps: “3-(2′-[18F]fluoroethyl)spiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates and humans”, J. Cereb. Blood Flow Metab. Vol. 9, (1989), pp. 830–839. Search in Google Scholar

[123] D.C. MacLaren, S.S. Gambhir, N. Satyamurthy, J.R. Barrio, S. Sharfstein, T. Toyokuni, L. Wu, A.J. Berk, S.R. Cherry, M.E. Phelps and H.R. Herschman: “Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals”, Gene Ther., Vol. 6, (1999), pp. 785–791. http://dx.doi.org/10.1038/sj.gt.330087710.1038/sj.gt.3300877Search in Google Scholar PubMed

[124] Q. Liang, N. Satyamurthy, J.R. Barrio, T. Toyokuni, M.P. Phelps, S.S. Gambhir and H.R. Herschman: “Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction”, Gene Ther., Vol. 8, (2001), pp. 1490–1498. http://dx.doi.org/10.1038/sj.gt.330154210.1038/sj.gt.3301542Search in Google Scholar PubMed

[125] Y. Chen, J.C. Wu, J.J. Min, G. Sundaresan, X. Lewis, Q. Liang, H.R. Herschman and S.S. Gambhir: “Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery”, Circulation, Vol. 109, (2004), pp. 1415–1420. http://dx.doi.org/10.1161/01.CIR.0000121727.59564.5B10.1161/01.CIR.0000121727.59564.5BSearch in Google Scholar PubMed PubMed Central

[126] J.C. Wu, M. Inubushi, G. Sundaresan, H.R. Schelbert and S.S. Gambhir: “Optical imaging of cardiac reporter gene expression in living rats”, Circulation, Vol. 105, (2002), pp. 1631–1634. http://dx.doi.org/10.1161/01.CIR.0000014984.95520.AD10.1161/01.CIR.0000014984.95520.ADSearch in Google Scholar

[127] J. Minn, Y. Kang, I. Serganova, G.P. Gupta, D.D. Giri, M. Doubrovin, V. Ponomarev, W.L. Gerald, R. Blasberg and J. Massague: “Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors”, J. Clin. Invest., Vol. 115, (2005), pp. 44–55. http://dx.doi.org/10.1172/JCI20052232010.1172/JCI200522320Search in Google Scholar

[128] T. Wilson and J.W. Hastings: “Bioluminescence”, Annu. Rev. Cell Dev. Biol., Vol. 14, (1998), pp. 197–230. http://dx.doi.org/10.1146/annurev.cellbio.14.1.19710.1146/annurev.cellbio.14.1.197Search in Google Scholar PubMed

[129] Y.A. Yu, T. Timiryasova, Q. Zhang, R. Beltz and A.A. Szalay: “Optical imaging: bacteria, viruses and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals”, Anal. Bioanal. Chem. Vol. 377, (2003), pp. 964–972. http://dx.doi.org/10.1007/s00216-003-2065-010.1007/s00216-003-2065-0Search in Google Scholar PubMed

[130] J.C. Matthews, K. Hori and M.J. Cormier: “Purification and properties of Renilla reniformis luciferase”, Biochemistry, Vol. 16, (1977), pp. 85–91. http://dx.doi.org/10.1021/bi00620a01410.1021/bi00620a014Search in Google Scholar PubMed

[131] J.E. Wampler, K. Hori, J.W. Lee and M.J. Cormier: “Structured bioluminescence. Two emitters during both the in vitro and the in vivo bioluminescence of the sea pansy, Renilla”, Biochemistry, Vol. 10, (1971), pp. 2903–2909. http://dx.doi.org/10.1021/bi00791a01710.1021/bi00791a017Search in Google Scholar PubMed

[132] B.A. Tannous, D.E. Kim, J.L. Fernandez, R. Weissleder and X.O. Breakefield: “Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo”, Mol. Ther., Vol. 11, (2005), pp. 435–443. http://dx.doi.org/10.1016/j.ymthe.2004.10.01610.1016/j.ymthe.2004.10.016Search in Google Scholar PubMed

[133] M. Verhaegent and T.K. Christopoulos: “Recombinant Gaussia luciferase. Over-expression, purification and analytical application of a bioluminescent reporter for DNA hybridization”, Anal. Chem., Vol. 74, (2002), pp. 4378–4385. http://dx.doi.org/10.1021/ac025742k10.1021/ac025742kSearch in Google Scholar PubMed

[134] L.F. Greer III and A.A. Szalay: “Imaging of light emission from the expression of luciferases in living cells and organisms: a review”, Luminescence, Vol. 17, (2002), pp. 43–74. http://dx.doi.org/10.1002/bio.67610.1002/bio.676Search in Google Scholar PubMed

[135] E.A. Meighen: “Bacterial bioluminescence: organization, regulation and application of the lux genes”, FASEB J., Vol. 7, (1993), pp. 1016–1022. Search in Google Scholar

[136] S. Bhaumik and S.S. Gambhir: “Optical imaging of Renilla luciferase reporter gene expression in living mice”, Proc. Natl. Acad. Sci. U.S.A., Vol. 99, (2002), pp. 377–382. http://dx.doi.org/10.1073/pnas.01261109910.1073/pnas.012611099Search in Google Scholar PubMed PubMed Central

[137] H. Zhao, T.C. Doyle, R.J. Wong, Y. Cao, D.K. Stevenson, D. Piwnica-Worms and C.H. Contag: “Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals”, Mol. Imaging, Vol. 3, (2004), pp. 43–54. http://dx.doi.org/10.1162/15353500477386171410.1162/153535004773861714Search in Google Scholar PubMed

[138] A. Pichler, J.L. Prior and D. Piwnica-Worms: “Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine”, Proc. Natl. Acad. Sci. U.S.A., Vol. 101, (2004), pp. 1702–1707. http://dx.doi.org/10.1073/pnas.030432610110.1073/pnas.0304326101Search in Google Scholar PubMed PubMed Central

[139] J.R. de Wet, K.V. Wood, M. DeLuca, D.R. Helinski and S. Subramani: “Firefly luciferase gene: structure and expression in mammalian cells”, Mol. Cell. Biol., Vol. 7, (1987), pp. 725–737. Search in Google Scholar

[140] H. Zhao, T.C. Doyle, O. Coquoz, F. Kalish, B.W. Rice and C.H. Contag: “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo”, J. Biomed. Opt., Vol. 10, (2005), pp. 41210. http://dx.doi.org/10.1117/1.203238810.1117/1.2032388Search in Google Scholar PubMed

[141] M.V. Matz, A.F. Fradkov, Y.A. Labas, A.P. Savitsky, A.G. Zaraisky, M.L. Markelov and S.A. Lukyanov: “Fluorescent proteins from nonbioluminescent Anthozoa species”, Nat. Biotechnol. Vol. 17, (1999), pp. 969–973. http://dx.doi.org/10.1038/1365710.1038/13657Search in Google Scholar PubMed

[142] M.M. Falk and U. Lauf: “High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP and YFP to study the structural composition of gap junctions in living cells”, Microsc. Res. Tech., Vol. 52, (2001), pp. 251–262. http://dx.doi.org/10.1002/1097-0029(20010201)52:3<251::AID-JEMT1011>3.0.CO;2-#Search in Google Scholar

[143] K. Hadjantonakis and A. Nagy: “The color of mice: in the light of GFP-variant reporters”, Histochem. Cell Biol., Vol. 115, (2001), pp. 49–58. Search in Google Scholar

[144] Y.A. Labas, N.G. Gurskaya, Y.G. Yanushevich, A.F. Fradkov, K.A. Lukyanov, S.A. Lukyanov and M.V. Matz: “Diversity and evolution of the green fluorescent protein family”, Proc. Natl. Acad. Sci. U.S.A., Vol. 99, (2002), pp. 4256–4261. http://dx.doi.org/10.1073/pnas.06255229910.1073/pnas.062552299Search in Google Scholar PubMed PubMed Central

[145] R. Yuste: “Fluorescence microscopy today”, Nat. Methods, Vol. 2, (2005), pp. 902–904. http://dx.doi.org/10.1038/nmeth1205-90210.1038/nmeth1205-902Search in Google Scholar PubMed

[146] D.M. Chudakov, S. Lukyanov and K.A. Lukyanov: “Fluorescent proteins as a toolkit for in vivo imaging”, Trends Biotechnol., Vol. 23, (2005), pp. 605–613. http://dx.doi.org/10.1016/j.tibtech.2005.10.00510.1016/j.tibtech.2005.10.005Search in Google Scholar PubMed

[147] D.A. Shagin, E.V. Barsova, Y.G. Yanushevich, A.F. Fradkov, K.A. Lukyanov, Y.A. Labas, T.N. Semenova, J.A. Ugalde, A. Meyers, J.M. Nunez, E.A. Widder, S.A. Lukyanov and M.V. Matz: “GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity”, Mol. Biol. Evol., Vol. 21, (2004), pp. 841–850. http://dx.doi.org/10.1093/molbev/msh07910.1093/molbev/msh079Search in Google Scholar PubMed

[148] J. Wiedenmann, A. Schenk, C. Rocker, A. Girod, K.D. Spindler and G.U. Nienhaus: “A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria)”, Proc. Natl. Acad. Sci. U.S.A., Vol. 99, (2002), pp. 11646–11651. http://dx.doi.org/10.1073/pnas.18215719910.1073/pnas.182157199Search in Google Scholar

[149] N.G. Gurskaya, A.F. Fradkov, A. Terskikh, M.V. Matz, Y.A. Labas, V.I. Martynov, Y.G. Yanushevich, K.A. Lukyanov and S.A. Lukyanov: “GFP-like chromoproteins as a source of far-red fluorescent proteins”, FEBS Lett.Vol. 507, (2001), pp. 16–20. http://dx.doi.org/10.1016/S0014-5793(01)02930-110.1016/S0014-5793(01)02930-1Search in Google Scholar

[150] R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. 1 Baird, D.A. Zacharias and R.Y. Tsien: “A monomeric red fluorescent protein”, Proc. Natl. Acad. Sci. U.S.A., Vol. 99, (2002), pp. 7877–7882. http://dx.doi.org/10.1073/pnas.08224369910.1073/pnas.082243699Search in Google Scholar PubMed PubMed Central

[151] L. Wang, W.C. Jackson, P.A. Steinbach and R.Y. Tsien: “Evolution of new nonantibody proteins via iterative somatic hypermutation”, Proc. Natl. Acad. Sci. U.S.A., Vol. 101, (2004), pp. 16745–16749. http://dx.doi.org/10.1073/pnas.040775210110.1073/pnas.0407752101Search in Google Scholar PubMed PubMed Central

[152] D.M. Chudakov, V.V. Verkhusha, D.B. Staroverov, E.A. Souslova, S. Lukyanov and K.A. Lukyanov: “Photoswitchable cyan fluorescent protein for protein tracking”, Nat. Biotechnol. Vol. 22, (2004), pp. 1435–1439. http://dx.doi.org/10.1038/nbt102510.1038/nbt1025Search in Google Scholar PubMed

[153] D.M. Chudakov, V.V. Belousov, A.G. Zaraisky, V.V. Novoselov, D.B. Staroverov, D.B. Zorov, S. Lukyanov and K.A. Lukyanov: “Kindling fluorescent proteins for precise in vivo photolabeling”, Nat. Biotechnol. Vol. 21, (2003), pp. 191–194. http://dx.doi.org/10.1038/nbt77810.1038/nbt778Search in Google Scholar PubMed

[154] D.M. Chudakov, A.V. Feofanov, N.N. Mudrik, S. Lukyanov and K.A. Lukyanov: “Chromophore environment provides clue to “kindling fluorescent protein”, riddle”, J. Biol. Chem. Vol. 278, (2003), pp. 7215–7219. http://dx.doi.org/10.1074/jbc.M21198820010.1074/jbc.M211988200Search in Google Scholar PubMed

[155] J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Rocker, A. Salih, K.D. Spindler and G.U. Nienhaus: “EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion”, Proc. Natl. Acad. Sci. U.S.A., Vol. 101, (2004), pp. 15905–15910. http://dx.doi.org/10.1073/pnas.040366810110.1073/pnas.0403668101Search in Google Scholar PubMed PubMed Central

[156] R. Ando, H. Mizuno and A. Miyawaki: “Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting”, Science, Vol. 306, (2004), pp. 1370–1373. http://dx.doi.org/10.1126/science.110250610.1126/science.1102506Search in Google Scholar PubMed

[157] A. De and S.S. Gambhir: “Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer”, FASEB J., Vol. 19, (2005), pp. 2017–2019. Search in Google Scholar

[158] S. Zhang, C. Ma and M. Chalfie: “Combinatorial marking of cells and organelles with reconstituted fluorescent proteins”, Cell, Vol. 119, (2004), pp. 137–144. http://dx.doi.org/10.1016/j.cell.2004.09.01210.1016/j.cell.2004.09.012Search in Google Scholar PubMed

[159] R.M. Hoffman: “The multiple uses of fluorescent proteins to visualize cancer in vivo”, Nat. Rev. Cancer, Vol. 5, (2005), pp. 796–806. http://dx.doi.org/10.1038/nrc171710.1038/nrc1717Search in Google Scholar PubMed

[160] M. Yang, E. Baranov, P. Jiang, F.X. Sun, X.M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, T. Chishima, H. Shimada, A.R. Moossa, S. Penman and R.M. Hoffman: “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases”, Proc. Natl. Acad. Sci. U.S.A., Vol. 97, (2000), pp. 1206–1211. http://dx.doi.org/10.1073/pnas.97.3.120610.1073/pnas.97.3.1206Search in Google Scholar PubMed PubMed Central

[161] V.A. Kolb, E.V. Makeyev and A.S. Spirin: “Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system”, J. Biol. Chem., Vol. 275, (2000), pp. 16597–16601. http://dx.doi.org/10.1074/jbc.M00203020010.1074/jbc.M002030200Search in Google Scholar PubMed

[162] C. Andreatta, P. Nahreini, A.R. Hovland, B. Kumar, J. Edwards-Prasad and K.N. Prasad: “Use of short-lived green fluorescent protein for the detection of proteasome inhibition”, Biotechniques, Vol. 30, (2001), pp. 656–660. Search in Google Scholar

[163] H. Ben-Tekaya, K. Miura, R. Pepperkok and H.P. Hauri: “Live imaging of bidirectional traffic from the ERGIC”, J. Cell. Sci., Vol. 118, (2005), pp. 357–367. http://dx.doi.org/10.1242/jcs.0161510.1242/jcs.01615Search in Google Scholar PubMed

[164] V. Ponomarev, M. Doubrovin, I. Serganova, J. Vider, A. Shavrin, T. Beresten, A. Ivanova, L. Ageyeva, V. Tourkova, J. Balatoni, W. Bornmann, R. Blasberg and J. Gelovani Tjuvajev: “A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent and nuclear noninvasive imaging”, Eur. J. Nucl. Med. Mol. Imaging, Vol. 31, (2004), pp. 740–751. http://dx.doi.org/10.1007/s00259-003-1441-510.1007/s00259-003-1441-5Search in Google Scholar PubMed

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-006-0007-5/html
Scroll to top button