Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 29, 2013

Combining stochastic and deterministic approaches within high efficiency molecular simulations

  • Bruno Escribano EMAIL logo , Elena Akhmatskaya and Jon Mujika
From the journal Open Mathematics

Abstract

Generalized Shadow Hybrid Monte Carlo (GSHMC) is a method for molecular simulations that rigorously alternates Monte Carlo sampling from a canonical ensemble with integration of trajectories using Molecular Dynamics (MD). While conventional hybrid Monte Carlo methods completely re-sample particle’s velocities between MD trajectories, our method suggests a partial velocity update procedure which keeps a part of the dynamic information throughout the simulation. We use shadow (modified) Hamiltonians, the asymptotic expansions in powers of the discretization parameter corresponding to timestep, which are conserved by symplectic integrators to higher accuracy than true Hamiltonians. We present the implementation of this method into the highly efficient MD code GROMACS and demonstrate its performance and accuracy on computationally expensive systems like proteins in comparison with the molecular dynamics techniques already available in GROMACS. We take advantage of the state-of-the-art algorithms adopted in the code, leading to an optimal implementation of the method. Our implementation introduces virtually no overhead and can accurately recreate complex biological processes, including rare event dynamics, saving much computational time compared with the conventional simulation methods.

MSC: 82B80; 65P10

[1] Aisen P., Transferrin, the transferrin receptor, and the uptake of iron by cells, In: Metal Ions in Biological Systems, 35, Marcel Dekker, New York, 1998, 585–631 Search in Google Scholar

[2] Akhmatskaya E., Bou-Rabee N., Reich S., A comparison of generalized hybrid Monte Carlo methods without momentum flip, J. Comput. Phys., 2009, 228(6), 2256–2265 http://dx.doi.org/10.1016/j.jcp.2008.12.01410.1016/j.jcp.2008.12.014Search in Google Scholar

[3] Akhmatskaya E., Bou-Rabee N., Reich S., Erratum to ”A comparison of generalized hybrid Monte Carlo methods with and without momentum flip” [J. Comput. Phys. 228 (2009) 2256–2265], J. Comput. Phys., 2009, 228(19), 7492–7496 http://dx.doi.org/10.1016/j.jcp.2009.06.03910.1016/j.jcp.2009.06.039Search in Google Scholar

[4] Akhmatskaya E., Reich S., GSHMC: An efficient method for molecular simulation, J. Comput. Phys., 2008, 227(10), 4934–4954 http://dx.doi.org/10.1016/j.jcp.2008.01.02310.1016/j.jcp.2008.01.023Search in Google Scholar

[5] Bussi G., Donadio D., Parrinello M., Canonical sampling through velocity rescaling, J. Chem. Phys., 2007, 126(1), #014101 http://dx.doi.org/10.1063/1.240842010.1063/1.2408420Search in Google Scholar

[6] Darden T., York D., Pedersen L., Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems, J. Chem. Phys., 1993, 98(12), 10089–10092 http://dx.doi.org/10.1063/1.46439710.1063/1.464397Search in Google Scholar

[7] Duane S., Kennedy A.D., Pendleton B.J., Roweth D., Hybrid Monte Carlo, Phys. Lett. B, 1987, 195, 216–222 http://dx.doi.org/10.1016/0370-2693(87)91197-X10.1016/0370-2693(87)91197-XSearch in Google Scholar

[8] Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G., A smooth particle mesh Ewald potential method, J. Chem. Phys., 1995, 103(19), 8577–8593 http://dx.doi.org/10.1063/1.47011710.1063/1.470117Search in Google Scholar

[9] Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L., Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 1983, 79(2), 926–935 http://dx.doi.org/10.1063/1.44586910.1063/1.445869Search in Google Scholar

[10] Hairer E., Lubich C., Wanner G., Geometric Numerical Integration, Springer Ser. Comput. Math., 31, Springer, Berlin-Heidelberg, 2002 http://dx.doi.org/10.1007/978-3-662-05018-710.1007/978-3-662-05018-7Search in Google Scholar

[11] Hess B., Bekker H., Berendsen H.J.C. Fraaije J.G.E.M., LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 1997, 18(12), 1463–1472 http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-HSearch in Google Scholar

[12] Hess B., Kutzner C., van der Spoel D., Lindahl E., GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 2008, 4(3), 435–447 http://dx.doi.org/10.1021/ct700301q10.1021/ct700301qSearch in Google Scholar

[13] Horowitz A.M., A generalized guided Monte Carlo algorithm, Phys. Lett. B, 1991, 268(2), 247–252 http://dx.doi.org/10.1016/0370-2693(91)90812-510.1016/0370-2693(91)90812-5Search in Google Scholar

[14] Izaguirre J.A., Hampton S.S., Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules, J. Comput. Phys., 2004, 200(2), 581–604 http://dx.doi.org/10.1016/j.jcp.2004.04.01610.1016/j.jcp.2004.04.016Search in Google Scholar

[15] Kennedy A.D., Pendleton B., Acceptances and autocorrelations in hybrid Monte Carlo, Nuclear Phys. B — Proceedings Supplements, 1991, 20, 118–121 http://dx.doi.org/10.1016/0920-5632(91)90893-J10.1016/0920-5632(91)90893-JSearch in Google Scholar

[16] Kennedy A.D., Pedlenton B., Cost of the generalised hybrid Monte Carlo algorithm for free field theory, Nuclear Phys. B, 2001, 607(3), 456–510 http://dx.doi.org/10.1016/S0550-3213(01)00129-810.1016/S0550-3213(01)00129-8Search in Google Scholar

[17] Klausner R.D., Ashwell G., van Renswoude J., Harford J.B., Bridges K.R., Binding of apotransferrin to K562 cells¶ explanation of the transferrin cycle, Proc. Natl. Acad. Sci. USA, 1983, 80(8), 2263–2266 http://dx.doi.org/10.1073/pnas.80.8.226310.1073/pnas.80.8.2263Search in Google Scholar

[18] Liu J.S., Monte Carlo Strategies in Scientific Computing, Springer Ser. Statist., Springer, New York, 2001 Search in Google Scholar

[19] MacGillivray R.T., Moore S.A., Chen J., Anderson B.F., Baker H., Luo Y., Bewley M., Smith C.A., Murphy M.E., Wang Y., Mason A.B., Woodworth R.C., Brayer G.D., Baker E.N., Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release, Biochemistry, 1998, 37(22), 7919–7928 http://dx.doi.org/10.1021/bi980355j10.1021/bi980355jSearch in Google Scholar

[20] MacKerell A.D., Bashford D., Bellott E.M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiórkiewicz-Kuczera J., Yin D., Karplus M., All-atom empirical potential for molecular modeling and dynamics studies of proteins, The Journal of Physical Chemistry B, 1998, 102(18), 3586–3616 http://dx.doi.org/10.1021/jp973084f10.1021/jp973084fSearch in Google Scholar

[21] Mujika J.I., Escribano B., Akhmatskaya E., Ugalde J.M., Lopez X., Molecular dynamics simulations of iron- and aluminum-loaded serum transferrin: protonation of Tyr188 is necessary to prompt the metal release, Biochemistry, 2012, 51(35), 7017–7027 http://dx.doi.org/10.1021/bi300584p10.1021/bi300584pSearch in Google Scholar

[22] Rinaldo D., Field M.J., A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein, Biophys. J., 2003, 85(6), 3485–3501 http://dx.doi.org/10.1016/S0006-3495(03)74769-910.1016/S0006-3495(03)74769-9Search in Google Scholar

[23] Skeel R.D., Hardy D.J., Practical construction of modified Hamiltonians, SIAM J. Comput., 2001, 23(4), 1172–1188 http://dx.doi.org/10.1137/S106482750138318X10.1137/S106482750138318XSearch in Google Scholar

[24] Sweet C.R., Hampton S.S., Skeel R.D., Izaguirre J.A., A separable shadow Hamiltonian hybrid Monte Carlo method, J. Chem. Phys., 2009, 131(17), #174106 http://dx.doi.org/10.1063/1.325368710.1063/1.3253687Search in Google Scholar PubMed PubMed Central

[25] Wee C.L., Sansom M.S., Reich S., Akhmatskaya E., Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system, The Journal of Physical Chemistry B, 2008, 112(18), 5710–5717 http://dx.doi.org/10.1021/jp076712u10.1021/jp076712uSearch in Google Scholar PubMed

[26] GROMACS Programmer’s Guide, available at http://www.gromacs.org/Developer_Zone/Programming_Guide/Programmer Search in Google Scholar

Published Online: 2013-1-29
Published in Print: 2013-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-012-0164-x/html
Scroll to top button