Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 30, 2010

On the hierarchies of higher order mKdV and KdV equations

  • Axel Grünrock EMAIL logo
From the journal Open Mathematics

Abstract

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces $$ \hat H_s^r \left( \mathbb{R} \right) $$ defined by the norm $$ \left\| {v_0 } \right\|_{\hat H_s^r \left( \mathbb{R} \right)} : = \left\| {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\|_{L_\xi ^{r'} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1} {2}} , \frac{1} {r} + \frac{1} {{r'}} = 1 $$.

Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ $$ \frac{{2j - 1}} {{2r'}} $$. The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < $$ \frac{{2j - 1}} {{2r'}} $$. The results for r = 2 — so far in the literature only if j = 1 (mKdV) or j = 2 — can be combined with the higher order conservation laws for the mKdV equation to obtain global well-posedness of the jth equation in H s(ℝ) for s ≥ $$ \frac{{j + 1}} {2} $$, if j is odd, and for s ≥ $$ \frac{j} {2} $$, if j is even. — The Cauchy problem for the jth equation in the KdV hierarchy with data in $$ \hat H_s^r \left( \mathbb{R} \right) $$ cannot be solved by Picard iteration, if r > $$ \frac{{2j}} {{2j - 1}} $$, independent of the size of s ∈ ℝ. Especially for j ≥ 2 we have C 2-ill-posedness in H s(ℝ). With similar arguments as used before in the mKdV context it is shown that this problem is locally well-posed in $$ \hat H_s^r \left( \mathbb{R} \right) $$, if 1 < r ≤ $$ \frac{{2j}} {{2j - 1}} $$ and $$ s > j - \frac{3} {2} - \frac{1} {{2j}} + \frac{{2j - 1}} {{2r'}} $$. For KdV itself the lower bound on s is pushed further down to $$ s > max\left( { - \frac{1} {2} - \frac{1} {{2r'}} - \frac{1} {4} - \frac{{11}} {{8r'}}} \right) $$, where r ∈ (1,2). These results rely on the contraction mapping principle, and the flow map is real analytic.

MSC: 35Q53

[1] Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., 1978, 61, 1–30 http://dx.doi.org/10.1007/BF0160946510.1007/BF01609465Search in Google Scholar

[2] Avramidi I., Schimming R., A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., 2000, 219, 45–64 http://dx.doi.org/10.1002/1522-2616(200011)219:1<45::AID-MANA45>3.0.CO;2-S10.1002/1522-2616(200011)219:1<45::AID-MANA45>3.0.CO;2-SSearch in Google Scholar

[3] Banica V., Vega L., On the Dirac delta as initial condition for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25, 697–711 http://dx.doi.org/10.1016/j.anihpc.2007.03.00710.1016/j.anihpc.2007.03.007Search in Google Scholar

[4] Cazenave T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003 10.1090/cln/010Search in Google Scholar

[5] Cazenave T., Vega L., Vilela M.C., A note on the nonlinear Schrödinger equation in weak L p spaces, Commun. Contemp. Math., 2001, 3, 153–162 http://dx.doi.org/10.1142/S021919970100031710.1142/S0219199701000317Search in Google Scholar

[6] Chern S.S., Peng C.K., Lie groups and KdV equations, Manuscripta Math., 1979, 28, 207–217 http://dx.doi.org/10.1007/BF0164797210.1007/BF01647972Search in Google Scholar

[7] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 2003, 125, 1235–1293 http://dx.doi.org/10.1353/ajm.2003.004010.1353/ajm.2003.0040Search in Google Scholar

[8] Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal., 2001, 179, 409–425 http://dx.doi.org/10.1006/jfan.2000.368710.1006/jfan.2000.3687Search in Google Scholar

[9] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on ℝ and \( \mathbb{T} \) , J. Amer. Math. Soc., 2003, 16, 705–749 http://dx.doi.org/10.1090/S0894-0347-03-00421-110.1090/S0894-0347-03-00421-1Search in Google Scholar

[10] Fefferman C., Inequalities for strongly singular convolution operators, Acta Math., 1970, 124, 9–36 http://dx.doi.org/10.1007/BF0239456710.1007/BF02394567Search in Google Scholar

[11] Foschi D., Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2005, 2, 1–24 http://dx.doi.org/10.1142/S021989160500036110.1142/S0219891605000361Search in Google Scholar

[12] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Korteweg-deVries equation and generalization, VI, Methods for exact solution, Comm. Pure Appl. Math., 1974, 27, 97–133 http://dx.doi.org/10.1002/cpa.316027010810.1002/cpa.3160270108Search in Google Scholar

[13] Gardner C.S., Korteweg-de Vries equation and generalizations, IV, The Korteweg-de Vries equation as a Hamiltonian system, J. Mathematical Phys., 1971, 12, 1548–1551 http://dx.doi.org/10.1063/1.166577210.1063/1.1665772Search in Google Scholar

[14] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy Problem for the Zakharov System, J. Funct. Anal., 1997, 151, 384–436 http://dx.doi.org/10.1006/jfan.1997.314810.1006/jfan.1997.3148Search in Google Scholar

[15] Grünrock A., An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004, 61, 3287–3308 http://dx.doi.org/10.1155/S107379280414098110.1155/S1073792804140981Search in Google Scholar

[16] Grünrock A., Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005, 41, 2525–2558 http://dx.doi.org/10.1155/IMRN.2005.252510.1155/IMRN.2005.2525Search in Google Scholar

[17] Grünrock A., Herr S., Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 2008, 39, 1890–1920 http://dx.doi.org/10.1137/07068913910.1137/070689139Search in Google Scholar

[18] Grünrock A., Vega L., Local well-posedness for the modified KdV equation in almost critical \( \widehat{H_s^r } \) -spaces, Trans. Amer. Math. Soc., 2009, 361, 5681–5694 http://dx.doi.org/10.1090/S0002-9947-09-04611-X10.1090/S0002-9947-09-04611-XSearch in Google Scholar

[19] Hörmander L., The analysis of linear partial differential operators, II, Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 257, Springer-Verlag, Berlin, 1983 Search in Google Scholar

[20] Kenig C.E., Ponce G., Vega L., Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J., 1991, 40, 33–69 http://dx.doi.org/10.1512/iumj.1991.40.4000310.1512/iumj.1991.40.40003Search in Google Scholar

[21] Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 1993, 46, 527–620 http://dx.doi.org/10.1002/cpa.316046040510.1002/cpa.3160460405Search in Google Scholar

[22] Kenig C.E., Ponce G., Vega L., On the hierarchy of the generalized KdV equations, In: Ercolani N.M., Gabitov I.R., Levermore C.D., Serre D. (Eds.), Singular limits of dispersive waves, Proceedings of the NATO Advanced Research Workshop (École Normale Supérieure, Lyon, July 8–12, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 1994, 320, 347–356 10.1007/978-1-4615-2474-8_24Search in Google Scholar

[23] Kenig C.E., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 1994, 122, 157–166 http://dx.doi.org/10.2307/216085510.2307/2160855Search in Google Scholar

[24] Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 1996, 9, 573–603 http://dx.doi.org/10.1090/S0894-0347-96-00200-710.1090/S0894-0347-96-00200-7Search in Google Scholar

[25] Kenig C.E., Ponce G., Vega L., Quadratic forms for the 1 — D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 1996, 348, 3323–3353 http://dx.doi.org/10.1090/S0002-9947-96-01645-510.1090/S0002-9947-96-01645-5Search in Google Scholar

[26] Kenig C.E., Ponce G., Vega L., On the illposedness of some canonical dispersive equations, Duke Math. J., 2001, 106, 617–633 http://dx.doi.org/10.1215/S0012-7094-01-10638-810.1215/S0012-7094-01-10638-8Search in Google Scholar

[27] Koch H., Tzvetkov N., On the local well-posedness of the Benjamin-Ono equation in H s(ℝ), Int. Math. Res. Not., 2003, 26, 1449–1464 http://dx.doi.org/10.1155/S107379280321126010.1155/S1073792803211260Search in Google Scholar

[28] Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries equation and generalizations, V, Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 1970, 11, 952–960 http://dx.doi.org/10.1063/1.166523210.1063/1.1665232Search in Google Scholar

[29] Kwon S., On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map, J. Differential Equations, 2008, 245, 2627–2659 http://dx.doi.org/10.1016/j.jde.2008.03.02010.1016/j.jde.2008.03.020Search in Google Scholar

[30] Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations, 2008, 01, 15 pp. Search in Google Scholar

[31] Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 1968, 21, 467–490 http://dx.doi.org/10.1002/cpa.316021050310.1002/cpa.3160210503Search in Google Scholar

[32] Lax P.D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 1975, 28, 141–188 10.1002/cpa.3160280105Search in Google Scholar

[33] Lax P.D., Almost periodic solutions of the KdV equation, SIAM Rev., 1976, 18, 351–375 http://dx.doi.org/10.1137/101807410.1137/1018074Search in Google Scholar

[34] Lax P.D., Outline of a theory of the KdV equation, In: Ruggeri T. (Ed.), Recent mathematical methods in nonlinear wave propagation, Lecture Notes in Mathematics, 1640, Springer, Berlin, 1996 http://dx.doi.org/10.1007/BFb009370710.1007/BFb0093707Search in Google Scholar

[35] Linares F., A higher order modified Korteweg-de Vries equation, Mat. Apl. Comput., 1995, 14, 253–267 Search in Google Scholar

[36] Matsuno Y., Bilinear transformation method, Academic Press, Inc., Orlando, FL, 1984 Search in Google Scholar

[37] Miura R.M., Korteweg-de Vries equation and generalizations, I, A remarkable explicit nonlinear transformation., J. Math. Phys., 1968, 9, 1202–1204 http://dx.doi.org/10.1063/1.166470010.1063/1.1664700Search in Google Scholar

[38] Miura R.M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and generalizations, II, Existence of conservation laws and constants of motion, J. Math. Phys., 1968, 9, 1204–1209 http://dx.doi.org/10.1063/1.166470110.1063/1.1664701Search in Google Scholar

[39] Molinet L., Saut J.-C., Tzvetkov N., Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 2001, 33, 982–988 http://dx.doi.org/10.1137/S003614100138530710.1137/S0036141001385307Search in Google Scholar

[40] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18, 1212–1215 http://dx.doi.org/10.1063/1.52339310.1063/1.523393Search in Google Scholar

[41] Ovcharov E., Global regularity of nonlinear dispersive equations and Strichartz estimates, PhD thesis, University of Edinburgh, Edinburgh, UK, 2009 Search in Google Scholar

[42] Perelman G., Vega L., Self-similar planar curves related to modified Korteweg-de Vries equation, J. Differential Equations, 2007, 235, 56–73 http://dx.doi.org/10.1016/j.jde.2006.12.01810.1016/j.jde.2006.12.018Search in Google Scholar

[43] Pilod D., On the Cauchy problem for higher-order nonlinear dispersive equations, J. Differential Equations, 2008, 245, 2055–2077 http://dx.doi.org/10.1016/j.jde.2008.07.01710.1016/j.jde.2008.07.017Search in Google Scholar

[44] Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations, 1993, 102, 360–381 http://dx.doi.org/10.1006/jdeq.1993.103410.1006/jdeq.1993.1034Search in Google Scholar

[45] Saut J.-C., Quelques generalisations de l’equation de Korteweg — de Vries, II, J. Differential Equations, 1979, 33, 320–335 (in French) http://dx.doi.org/10.1016/0022-0396(79)90068-810.1016/0022-0396(79)90068-8Search in Google Scholar

[46] Sjölin P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 1987, 55, 699–715 http://dx.doi.org/10.1215/S0012-7094-87-05535-910.1215/S0012-7094-87-05535-9Search in Google Scholar

[47] Taggart R.J., Inhomogeneous Strichartz estimates, preprint available at arXiv:0802.4120 Search in Google Scholar

[48] Vargas A., Vega L., Global wellposedness for 1D nonlinear Schrödinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. (9), 2001, 80, 1029–1044 http://dx.doi.org/10.1016/S0021-7824(01)01224-710.1016/S0021-7824(01)01224-7Search in Google Scholar

[49] Vilela M.C., Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 2007, 359, 2123–2136 http://dx.doi.org/10.1090/S0002-9947-06-04099-210.1090/S0002-9947-06-04099-2Search in Google Scholar

[50] Zheng Y.K., Chan W.L., Gauge transformation and the higher order Korteweg-de Vries equation, J. Math. Phys., 1988, 29, 308–314 http://dx.doi.org/10.1063/1.52806810.1063/1.528068Search in Google Scholar

Published Online: 2010-5-30
Published in Print: 2010-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-010-0024-5/html
Scroll to top button