Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 15, 2013

Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability

  • Feng Wang , Timothy J. Barnes and Clive A. Prestidge
From the journal Open Material Sciences

Abstract

We investigate the physicochemical characteristics of celecoxib (CEL) entrapped within particles of an oxidized porous silicon matrix (pSiox); determine the oral dose response of CEL compared to pure drug and innovator formulation; develop in vivo-in vitro correlation (IVIVC). CEL was loaded into a pSiox matrix by solvent partitioning, with the physical state of the CEL characterized by FTIR, DSC, TGA and XRD, and correlated with in vitro dissolution behavior. Single dose pharmacokinetic parameters of orally dosed CEL were determined in fasted rats for aqueous suspensions of pure CEL, Celebrexr and CEL-pSiox microparticles. Physicochemical testing of CEL-pSiox formulation confirmed the entrapment of CEL within porous nanostructure in an amorphous or non-crystalline form. CEL-pSiox demonstrated superior pharmacokinetics compared with CEL particles or Celebrexr, i.e. increased absolute bioavailability (96.2% vs. 65.2% vs. 88.1%), increased Cmax (0.91 ± 0.09 μg/mL vs. 0.50 ± 0.16 μg/mL vs. 0.73 ± 0.23 μg/mL) and reduced Tmax (1.0 ± 0.0 h vs. 2.8 ± 0.8 h vs. 3.4 ± 1.0 h). Single point correlation was established between in vitro dissolution efficiency (% DE) and in vivo absolute bioavailability or Cmax . Porous silicon microparticles can be formulated as an effective orally dosed solid dispersion preparation for celecoxib

References

[1] E. Tindall, Celecoxib for the treatment of pain and inflammation: the preclinical and clinical results, JAOA: Journal of the American Osteopathic Association, 99 (1999) 13S.Search in Google Scholar

[2] S. Paulson, M. Vaughn, S. Jessen, Y. Lawal, C. Gresk, B. Yan, T. Maziasz, C. Cook, A. Karim, Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption, Journal of Pharmacology and Experimental Therapeutics, 297 (2001) 638-645.Search in Google Scholar

[3] M. Yazdanian, K. Briggs, C. Jankovsky, A. Hawi, The “High Solubility” Definition of the Current FDA Guidance on Biopharmaceutical Classification System May Be Too Strict for Acidic Drugs, Pharmaceutical Research, 21 (2004) 293-299.Search in Google Scholar

[4] G. Chawla, P. Gupta, R. Thilagavathi, A. K. Chakraborti, A. K. Bansal, Characterization of solid-state forms of celecoxib, European Journal of Pharmaceutical Sciences, 20 (2003) 305-317.Search in Google Scholar

[5] G. L. Amidon, H. Lennernäs, V. P. Shah, J. R. Crison, A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability, Pharmaceutical Research, 12 (1995) 413-420.Search in Google Scholar

[6] C. Charnay, S. Begu, C. Tourne-Peteilh, L. Nicole, D. A. Lerner, J. M. Devoisselle, Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property, Eur. J. Pharm. Biopharm., 57 (2004) 533.10.1016/j.ejpb.2003.12.007Search in Google Scholar

[7] V. R. Sinha, R. Anitha, S. Ghosh, A. Nanda, R. Kumria, Complexation of celecoxib with _-cyclodextrin: Characterization of the interaction in solution and in solid state, Journal of Pharmaceutical Sciences, 94 (2005) 676-687.Search in Google Scholar

[8] B. Cappello, C. di Maio, M. Iervolino, A. Miro, Combined effect of hydroxypropyl methylcellulose and hydroxypropyl-_-cyclodextrin on physicochemical and dissolution properties of celecoxib, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59 (2007) 237-244.Search in Google Scholar

[9] N. Garti, M. Avrahami, A. Aserin, Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution, Journal of Colloid and Interface Science, 299 (2006) 352-365.Search in Google Scholar

[10] N. Subramanian, S. Ray, S. K. Ghosal, R. Bhadra, S. P. Moulik, Formulation Design of Self- Microemulsifying Drug Delivery Systems for Improved Oral Bioavailability of Celecoxib, Biological and Pharmaceutical Bulletin, 27 (2004) 1993-1999.Search in Google Scholar

[11] A. Tan, S. Simovic, A. K. Davey, T. Rades, C. A. Prestidge, Silica-lipid hybrid (SLH) microcapsules: A novel oral delivery system for poorly soluble drugs, Journal of Controlled Release, 134 (2009) 62-70.Search in Google Scholar

[12] A. P. Mann, T. Tanaka, A. Somasunderam, X. Liu, D. G. Gorenstein, M. Ferrari, E-Selectin-Targeted Porous Silicon Particle for Nanoparticle Delivery to the Bone Marrow, Adv. Mater. (Weinheim, Ger.), 23 (2011) H278.10.1002/adma.201101541Search in Google Scholar

[13] A. Tan, A. Martin, T. H. Nguyen, B. J. Boyd, C. A. Prestidge, Hybrid Nanomaterials that Mimic the Food Effect: Controlling Enzymatic Digestion for Enhanced Oral Drug Absorption, Angewandte Chemie, 124 (2012) 5571-5575.Search in Google Scholar

[14] T. H. Nguyen, A. Tan, L. Santos, D. Ngo, G. A. Edwards, C. J. H. Porter, C. A. Prestidge, B. J. Boyd, Silica-Lipid Hybrid (SLH) formulations enhance the oral bioavailability and efficacy of celecoxib: an invivo evaluation, Journal of Controlled Release, 167 (2013) 85-91.10.1016/j.jconrel.2013.01.012Search in Google Scholar

[15] A. Paradkar, M. Maheshwari, R. Kamble, I. Grimsey, P. York, Design and Evaluation of Celecoxib Porous Particles using Melt Sonocrystallization, Pharmaceutical Research, 23 (2006) 1395-1400.Search in Google Scholar

[16] A. T. M. Serajuddin, Solid dispersion of poorly watersoluble drugs: Early promises, subsequent problems, and recent breakthroughs, Journal of Pharmaceutical Sciences, 88 (1999) 1058-1066.Search in Google Scholar

[17] V. K. Kakumanu, A. K. Bansal, Enthalpy Relaxation Studies of Celecoxib Amorphous Mixtures, Pharmaceutical Research, 19 (2002) 1873-1878.Search in Google Scholar

[18] P. Gupta, V. K. Kakumanu, A. K. Bansal, Stability and Solubility of Celecoxib-PVP Amorphous Dispersions: A Molecular Perspective, Pharmaceutical Research, 21 (2004) 1762-1769.Search in Google Scholar

[19] M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez- Pariente, A New Property of MCM-41: Drug Delivery System, Chem. Mater., 13 (2001) 308.10.1021/cm0011559Search in Google Scholar

[20] F. Wang, H. Hui, T. J. Barnes, C. Barnett, C. A. Prestidge, Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs, Molecular Pharmaceutics, 7 (2010) 227-236.10.1021/mp900221eSearch in Google Scholar

[21] P. Zhao, H. Jiang, T. Jiang, Z. Zhi, C. Wu, C. Sun, J. Zhang, S. Wang, Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy, European Journal of Pharmaceutical Sciences, 45 (2012) 639-647.10.1016/j.ejps.2012.01.003Search in Google Scholar

[22] C. A. Prestidge, T. J. Barnes, C. H. Lau, C. Barnett, A. Loni, L. Canham, Mesoporous silicon: A platform for the delivery of therapeutics, Expert Opinion on Drug Delivery, 4 (2007) 101-110. [23] T. J. Barnes, K. L. Jarvis, C. A. Prestidge, Recent advances in porous silicon technology for drug delivery, Therapeutic Delivery, 4 (2013) 811-823.10.1517/17425247.4.2.101Search in Google Scholar

[24] H. Foll, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon, Mater. Sci. Eng., R, 39 (2002) 93.10.1016/S0927-796X(02)00090-6Search in Google Scholar

[25] L. T. Canham, Bioactive silicon structure fabrication through nanoetching techniques, Adv. Mater. (Weinheim, Ger.), 7 (1995) 1033.10.1002/adma.19950071215Search in Google Scholar

[26] S. P. Low, N. H. Voelcker, L. T. Canham, K. A. Williams, The biocompatibility of porous silicon in tissues of the eye, Biomaterials, 30 (2009) 2873.Search in Google Scholar

[27] A. E. Pap, K. Kordas, G. Toth, J. Levoska, A. Uusimaki, J. Vahakangas, S. Leppavuori, T. F. George, Thermal oxidation of porous silicon: Study on structure, Appl. Phys. Lett., 86 (2005) 041501.10.1063/1.1853519Search in Google Scholar

[28] K. L. Jarvis, T. J. Barnes, C. A. Prestidge, Aqueous and Thermal Oxidation of Porous Silicon Microparticles: Implications on Molecular Interactions, Langmuir, 24 (2008) 14222-14226.Search in Google Scholar

[29] K. L. Jarvis, T. J. Barnes, A. Badalyan, P. Pendleton, C. A. Prestidge, Impact of thermal oxidation on the adsorptive properties and structure of porous silicon particles, Journal of Physical Chemistry C, 112 (2008) 9717-9722.Search in Google Scholar

[30] V. P. Lehto, K. Vähä-Heikkilä, J. Paski, J. Salonen, Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles, Journal of Thermal Analysis and Calorimetry, 80 (2005) 393-397.Search in Google Scholar

[31] J. Salonen, J. Tuura, M. Bjorkqvist, V. P. Lehto, Subppm trace moisture detection with a simple thermally carbonized porous silicon sensor, Sens. Actuators, B, 114 (2006) 423.Search in Google Scholar

[32] T. Böcking, K. A. Kilian, P. J. Reece, K. Gaus, M. Gal, J. J. Gooding, Biofunctionalization of free-standing porous silicon films for self-assembly of photonic devices, Soft Matter, 8 (2012) 360-366.10.1039/C1SM06651JSearch in Google Scholar

[33] L. Britcher, T. J. Barnes, H. J. Griesser, C. A. Prestidge, PEGylation of Porous Silicon Using Click Chemistry, Langmuir, 24 (2008) 7625.10.1021/la801619vSearch in Google Scholar

[34] J. Salonen, L. Laitinen, A. M. Kaukonen, J. Tuura, M. Björkqvist, T. Heikkilä, K. Vähä-Heikkilä, J. Hirvonen, V. P. Lehto, Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs, Journal of Controlled Release, 108 (2005) 362-374.10.1016/j.jconrel.2005.08.017Search in Google Scholar

[35] A. M. Kaukonen, L. Laitinen, J. Salonen, J. Tuura, T. Heikkila, T. Limnell, J. Hirvonen, V. P. Lehto, Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles, Eur. J. Pharm. Biopharm., 66 (2007) 348.10.1016/j.ejpb.2006.11.021Search in Google Scholar

[36] C. A. Prestidge, T. J. Barnes, A. Mierczynska-Vasilev, I. Kempson, F. Peddie, C. Barnett, Peptide and protein loading into porous silicon wafers, Phys. Status Solidi A, 205 (2008) 311.10.1002/pssa.200723113Search in Google Scholar

[37] C. A. Prestidge, T. J. Barnes, A. Mierczynska-Vasilev, W. Skinner, F. Peddie, C. Barnett, Loading and release of a model protein from porous silicon powders, Phys. Status Solidi A, 204 (2007) 3361.Search in Google Scholar

[38] K. L. Jarvis, T. J. Barnes, C. A. Prestidge, Thermal Oxidation for Controlling Protein Interactions with Porous Silicon, Langmuir, 26 (2010) 14316-14322.Search in Google Scholar

[39] E. Pastor, E. Matveeva, A. Valle-Gallego, F. M. Goycoolea, M. Garcia-Fuentes, Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles, Colloids and Surfaces B-Biointerfaces, 88 (2011) 601-609.Search in Google Scholar

[40] M. Kilpeläinen, J. Mönkäre, M. A. Vlasova, J. Riikonen, V. P. Lehto, J. Salonen, K. Järvinen, K. H. Herzig, Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery, European Journal of Pharmaceutics and Biopharmaceutics, 77 (2011) 20-25.Search in Google Scholar

[41] M. Kilpelainen, J. Riikonen, M. A. Vlasova, A. Huotari, V. P. Lehto, J. Salonen, K. H. Herzig, K. Jarvinen, In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles, Journal of Controlled Release, 137 (2009) 166-170.Search in Google Scholar

[42] M. Kovalainen, J. Monkare, E. Makila, J. Salonen, V. P. Lehto, K. H. Herzig, K. Jarvinen, Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release, Pharmaceutical Research, 29 (2012) 837-846.Search in Google Scholar

[43] L. Vaccari, D. Canton, N. Zaffaroni, R. Villa, M. Tormen, E. di Fabrizio, Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent, Microelectron. Eng., 83 (2006) 1598.Search in Google Scholar

[44] B. Chen, J. Wei, F. Tay, Y. Wong, C. Iliescu, Silicon microneedle array with biodegradable tips for transdermal drug delivery, Microsystem Technologies, 14 (2008) 1015-1019.Search in Google Scholar

[45] K. Zhang, S. L. E. Loong, S. Connor, S. W. K. Yu, S. Y. Tan, R. T. H. Ng, K. M. Lee, L. Canham, P. K. H. Chow, Complete Tumor Response Following Intratumoral 32P BioSilicon on Human Hepatocellular and Pancreatic Carcinoma Xenografts in Nude Mice, Clin Cancer Res, 11 (2005) 7532.Search in Google Scholar

[46] W. Y. Leong, A. Loni, L. T. Canham, Electrically enhanced erosion of porous Si material in electrolyte by pH modulation and its application in chronotherapy, physica status solidi (a), 204 (2007) 1486-1490.Search in Google Scholar

[47] V. Andronis, G. Zografi, Crystal nucleation and growth of indomethacin polymorphs from the amorphous state, J. Non-Cryst. Solids, 271 (2000) 236.10.1016/S0022-3093(00)00107-1Search in Google Scholar

[48] H. G. Brittain, Spectral methods for the characterization of polymorphs and solvates, Journal of Pharmaceutical Sciences, 86 (1997) 405-412.10.1021/js960238eSearch in Google Scholar PubMed

[49] A. M. Kaushal, A. K. Chakraborti, A. K. Bansal, FTIR Studies on Differential Intermolecular Association in Crystalline and Amorphous States of Structurally Related Non-Steroidal Anti-Inflammatory Drugs, Molecular Pharmaceutics, 5 (2008) 937-945.10.1021/mp800098dSearch in Google Scholar PubMed

[50] D. B. Mawhinney, J. A. Glass, J. T. Yates, FTIR Study of the Oxidation of Porous Silicon, J. Phys. Chem. B, 101 (1997) 1202.10.1021/jp963322rSearch in Google Scholar

[51] A. Newman, D. Engers, S. Bates, I. Ivanisevic, R. C. Kelly, G. Zografi, Characterization of amorphous API:Polymer mixtures using X-ray powder diffraction, Journal of Pharmaceutical Sciences, 97 (2008) 4840-4856.10.1002/jps.21352Search in Google Scholar PubMed

[52] G. Steele, T. Austin, Preformulation predictions from small amount of compound as an aid to candidate drug selection, in: M. Gibson (Ed.) Pharmaceutical preformulation and formulation-A practical guide from candidate drug selection to commercial dosage form, CRC Press, New York, 2001, pp. 17-128.10.1201/b14413-5Search in Google Scholar

[53] Y. H. Ogata, N. Yoshimi, R. Yasuda, T. Tsuboi, T. Sakka, A. Otsuki, Structural change in p-type porous silicon by thermal annealing, Journal of Applied Physics, 90 (2001) 6487-6492.Search in Google Scholar

[54] C. Kowalchuk, J. F. Corrigan, Y. Huang, Preparation, characterization and condensation of novel metal chalcogenide/MCM-41 complexes, Chemical Communications, (2000) 1811-1812.10.1039/b002336lSearch in Google Scholar

[55] V. Ambrogi, L. Perioli, F. Marmottini, C. Rossi, Use of calcined Mg-Al-hydrotalcite to enhance the stability of celecoxib in the amorphous form, European Journal of Pharmaceutics and Biopharmaceutics, 66 (2007) 253-259.Search in Google Scholar

[56] S. Paulson, J. Zhang, A. Breau, J. Hribar, N. Liu, S. Jessen, Y. Lawal, J. Cogburn, C. Gresk, C. Markos, T. Maziasz, G. Schoenhard, E. Burton, Pharmacokinetics, tissue distribution, metabolism, and excretion of celecoxib in rats, Drug Metabolism and Disposition, 28 (2000) 514-521.Search in Google Scholar

[57] C. G. Wu, T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science, 264 (1994) 1757-1759.Search in Google Scholar

[58] T. Takei, T. Konishi, M. Fuji, T. Watanabe, M. Chikazawa, Phase transition of capillary condensed liquids in porous silica: effect of surface hydroxyl groups, Thermochimica Acta, 267 (1995) 159-167.10.1016/0040-6031(95)02475-1Search in Google Scholar

[59] T. Azads, C. Tourné-Péteilh, F. Aussenac, N. Baccile, C. Coelho, J. M. Devoisselle, F. Babonneau, Solid- State NMR Study of Ibuprofen Confined in MCM-41 Material, Chemistry of Materials, 18 (2006) 6382-6390.Search in Google Scholar

[60] A. Dokoumetzidis, P. Macheras, A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System, International Journal of Pharmaceutics, 321 (2006) 1-11.Search in Google Scholar

[61] B. C. Hancock, M. Parks, What is the True Solubility Advantage for Amorphous Pharmaceuticals?, Pharm. Res., 17 (2000) 397.Search in Google Scholar

[62] K. L. Jarvis, T. J. Barnes, C. A. Prestidge, Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications, Advances in Colloid and Interface Science, 175 (2012) 25-38.Search in Google Scholar

[63] F. Babonneau, L. Yeung, N. Steunou, C. Gervais, A. Ramila, M. Vallet-Regi, Solid State NMR Characterisation of Encapsulated Molecules in Mesoporous Silica, Journal of Sol-Gel Science and Technology, 31 (2004) 219-223.Search in Google Scholar

[64] S. Chandran, P. Ravi, R. Saha, Development and in vitro evaluation of oral controlled release formulations of celecoxib using optimization techniques, Yakugaku Zasshi, 126 (2006) 505-514.Search in Google Scholar

[65] USP, The United States Pharmacopeia USP 30, 30th ed., The United States Pharmacopeial Convention, 2007.Search in Google Scholar

[66] NF, The National Formulary NF25, 25th ed., The United States Pharmacopeial Convention, 2007.Search in Google Scholar

[67] J. B. Dressman, G. L. Amidon, C. Reppas, V. P. Shah, Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms, Pharmaceutical Research, 15 (1998) 11-22.Search in Google Scholar

[68] R. Schmuhl, A. van den Berg, D. H. A. Blank, J. E. ten Elshof, Surfactant-Modulated Switching of Molecular Transport in Nanometer-Sized Pores of Membrane Gates, Angewandte Chemie International Edition, 45 (2006) 3341-3345.Search in Google Scholar

[69] P. Costa, J. M. Sousa Lobo, Modeling and comparison of dissolution profiles, European Journal of Pharmaceutical Sciences, 13 (2001) 123-133.Search in Google Scholar

[70] A. B. Foraker, R. J. Walczak, M. H. Cohen, T. A. Boiarski, C. F. Grove, P. W. Swaan, Microfabricated Porous Silicon Particles Enhance Paracellular Delivery of Insulin Across Intestinal Caco-2 Cell Monolayers, Pharm. Res., 20 (2003) 110.Search in Google Scholar

[71] L. M. Bimbo, E. Mäkilä, T. Laaksonen, V. P. Lehto, J. Salonen, J. Hirvonen, H. A. Santos, Drug permeation across intestinal epithelial cells using porous silicon nanoparticles, Biomaterials, 32 (2011) 2625-2633.Search in Google Scholar

[72] R. Mellaerts, R. Mols, P. Kayaert, P. Annaert, J. Van Humbeeck, G. Van den Mooter, J. A. Martens, P. Augustijns, Ordered mesoporous silica induces pHindependent supersaturation of the basic low solubility compound itraconazole resulting in enhanced transepithelial transport, Int. J. Pharm., 357 (2008) 169.Search in Google Scholar

[73] K. A. Khan, The concept of dissolution efficiency, Journal of Pharmacy and Pharmacology, 27 (1975) 48-49.Search in Google Scholar

[74] J. G. Wagner, E. Nelson, Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drug, Journal of Pharmaceutical Sciences, 53 (1964) 1392-1403.Search in Google Scholar

[75] E. Scott Swenson, W. J. Curatolo, (C) Means to enhance penetration: (2) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity, Advanced Drug Delivery Reviews, 8 (1992) 39-92.Search in Google Scholar

[76] E. Nicolaides, E. Galia, C. Efthymiopoulos, J. B. Dressman, C. Reppas, Forecasting the In Vivo Performance of Four Low Solubility Drugs from Their In Vitro Dissolution Data, Pharmaceutical Research, 16 (1999) 1876-1882.Search in Google Scholar

[77] Z. Yu, J. B. Schwartz, E. T. Sugita, Theophylline controlled-release formulations: in vivo-in vitro correlations, Biopharmaceutics & Drug Disposition, 17 (1996) 259-272.10.1002/(SICI)1099-081X(199604)17:3<259::AID-BDD951>3.0.CO;2-GSearch in Google Scholar

[78] H. Kortejärvi, J. Mikkola, M. Bäckman, S. Antila, M. Marvola, Development of level A, B and C in vitro- in vivo correlations for modified-release levosimendan capsules, International Journal of Pharmaceutics, 241 (2002) 87-95.Search in Google Scholar

[79] J. B. Dressman, C. Reppas, In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs, European Journal of Pharmaceutical Sciences, 11, Supplement 2 (2000) S73-S80. 10.1016/S0928-0987(00)00181-0Search in Google Scholar

Published Online: 2013-10-15
Published in Print: 2014-1-1

©2013 Clive A. Prestidge et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.2478/mesbi-2013-0001/html
Scroll to top button