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NUMERICAL MODELING OF DIAGONAL CRACKS IN CONCRETE BEAMS

M. SLOWIK!, P. SMARZEWSKI?

In the paper, the method of a numerical simulation concerning diagonal crack propagation in con-
crete beams was presented. Two beams reinforced longitudinally but without shear reinforcement
were considered during the Finite Element Method analysis. In particular, a nonlinear method was
used to simulate the crack evaluation in the beams. The analysis was performed using the com-
mercial program ANSYS. In the numerical simulation, the limit surface for concrete described
by Willam and Warnke was applied to model the failure of concrete. To solve the FEM-system of
equations, the Newton-Raphson method was used. As the results of FEM calculations, the trajecto-
ries of total stains and numerical images of smeared cracks were obtained for two analyzed beams:
the slender beam S5 of /= 1.8 m and the short beam S3k of /,;,= 1.1 m. The applied method
allowed to generate both flexural vertical cracks and diagonal cracks in the shear regions. Some
differences in the evaluation of crack patterns in the beams were observed. The greater number
of flexural vertical cracks which penetrated deeper in the beam S5 caused the lower stiffness and
the greater deformation in the beam S5 compared to the short beam S3k. Numerical results were
compared with the experimental data from the early tests performed by Stowik [3]. The numerical
simulation yielded very similar results as the experiments and it confirmed that the character of
failure process altered according to the effective length of the member. The proposed numerical
procedure was successfully verified and it can be suitable for numerical analyses of diagonal crack
propagation in concrete beams.
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1. INTRODUCTION

Brittle failure takes place mostly in the materials in which stress relaxation cannot oc-
cur as a result of a dissipation process at the top of the crack. The most known brittle
materials are ceramics, glass and hardened steel. Concrete is generally considered as
quasi-brittle material because some plastic strains can develop during cracking. How-
ever, in some cases concrete behaves in a more brittle manner. Not only mechanical
properties determine the mode of failure. In large scale concrete members, the devel-
opment of plastic strain is limited and the fracture process has brittle character. Also
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a decrease of temperature causes a decrease of plastic response and then concrete may
work as a brittle material. These problems have been described for example by Brandt
[1], Bazant and Planas [2].

The low tensile strength of concrete puts limits to the use of plain concrete in
building structures. Therefore, concrete is usually reinforced and the general aim of
reinforcement in members made of concrete is to carry tensile stress, to limit crack
widths and to protect against brittle failure. Tensile strength is often disregarded in de-
sign for the Ultimate Limit State of reinforced concrete structures. But there are still
a few design problems where tensile capacity is of paramount importance. One of them
is so-called “shear failure” — a failure under combined shearing force and bending mo-
ment that takes place in flexural members. In longitudinally reinforced concrete beams
without shear reinforcement, this type of failure reduces the strength and the ductility
of the structural member.

The problem of shear failure in reinforced concrete beams without shear reinforce-
ment was investigated experimentally and presented by Stowik [3]. It was found that
the character of shear failure and diagonal crack propagation in the beams changed
according to the shear span-to-depth ratio a/d and the scale of the member. To analyze
the influence of those parameters on failure process, numerical simulations were per-
formed. A linear elastic analysis was applied (Stowik, Nowicki [4]) to investigate the
influence of a/d on diagonal crack propagation and a nonlinear analysis was carried out
(Stowik, Smarzewski [5]), in which the changing parameter was the effective length of
the beams.

It is a challenging task to model cracks in reinforced concrete members, especially
when several cracks appear in the member. When modeling fracture mechanism, the
nonlinear characteristic of concrete and reinforcing steel, in particular the softening of
the materials, should be considered. Another complication arises at modeling the bond
between concrete and steel. Furthermore, local large strain concentrations, which influ-
ence cracking and crushing in concrete, must be considered. To solve this complicated
problem, a spatial model should be built, a three-dimensional stress-strain state should
be considered and, last but not least, the proper method of solving the FEM-system of
equations should be applied.

In the paper, the procedure of numerical modeling of diagonal cracks in longitu-
dinally reinforced concrete beams is presented. This procedure has been applied in
a numerical simulation in order to verify it. The comparison of the obtained numerical
results with the test results is also discussed in the paper.

2. NUMERICAL SIMULATION

In the performed numerical analysis, two beams corresponding to the tested members
were modeled: one half of the beam S5 of /,;= 1.8 m and the whole beam S3k of
lz=1.1 m. The beams had the rectangular cross-section of the width 5 =0.12 m, the
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total depth 2 =0.25 m, and the effective depth d = 0.22 m. The beam specimens were
tested as simply supported beams under three-point bending. They were made from
concrete of the compressive strength f. = 32.7 MPa, the tensile strength /., = 3.0 MPa,
the Young’s modulus £, =37650 MPa. Two deformed steel bars with diameters of
18 mm were used as the bottom longitudinal reinforcement in the beams. The yield
stress of the steel was f,= 453 MPa and the tensile strength was f, = 698 MPa. More
details of the performed experimental investigation can be found in [3].

The Finite Element Method calculations were performed using the ANSYS pro-
gram. Eight-node solid elements were used to model the concrete. They were taken
from the library of the ANSYS program. Every node of the solid element had three
degrees of freedom — translation in the nodal x, y and z direction. The solid element
was capable of describing plastic behavior, cracking and crushing of concrete in three
axes of orthogonal system. Stress and strain components were calculated at integration
points. The discrete model of reinforcement was applied. Reinforcing bars were mod-
eled by three-dimensional bar elements. The connection between concrete and steel was
established as identical displacement of connected nodes (see Figure 1).

DISCRETE MODEL

concrete element

concrete node

shared node

reinforcement element

Fig. 1. Discrete model for reinforcement

A rectangular mesh was applied to model the beams. This kind of mesh is recom-
mended when solid elements are used in numerical simulations. The FEM-meshes for
both beams are presented in Figure 2.
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Fig. 2. FEM — mesh for beams S3k and S5
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The description of limit state of concrete under static and dynamic loading has been
the subject of numerous papers. Limit surfaces for concrete were described for example
by Willam and Warnke [6], Ottosen [7], Klisinski [8], Podgorski [9], Stolarski [10],
Bobinski and Tejchman [11], Widulinski et al. [12], Jankowiak and t.odygowski [13].
In the paper, Willam and Warnke criterion described in [6] was chosen to model the
failure of concrete. This criterion allows applying the nonlinear response of concrete for
triaxial behavior. It is defined as:

£—SZO,

c

where F is the function of stress conditions o,,,6,,,0,,, in the direction of the Cartesian
coordinate system x,y,z; S is the failure surface and f. is uniaxial compressive strength
causing crushing. The failure surface depends on principal stresses o, 6,03, where:
01>0,>63, ;= max(c,,,0,,,0,,), 63= min(c,,,6,,,6.,), and on strength parameters:
f; — uniaxial tension strength causing cracking; f,, — ultimate biaxial compressive
strength causing crushing; f; — ultimate compressive strength for a state of biaxial com-
pression superimposed on hydrostatic stress state o,; f; — ultimate compressive strength
for a state of uniaxial compression superimposed on hydrostatic stress state ;. The

geometrical interpretation of the criteria is shown in Figure 3.

Failure Surface Hydrostatic Section Failure Surface with Biaxial Stress

GYP

f cracking ft cracking

Grp

Buioes

o, > 0 (cracking or crushing)
o, = 0 (crushing)
o, < 0 (crushing)

Fig. 3. The limit surface

The failure of concrete can be distinguished as the state of cracking when any prin-
cipal stress is tensile or as the state of crushing when all principal stresses are compres-
sive.



NUMERICAL MODELING OF DIAGONAL CRACKS IN CONCRETE BEAMS 3 11

In the state of compression — compression — compression, function F, correspond-
ing to average tangential stress which is directly proportional to the second invariant of
deviator, has the form:

@.1) F=E=L[(ol—az)z+(az—a3)2+(as—al)2}5,

Ji5

and the elliptical failure surface S is described on the basis of geometrical considera-
tions in polar coordinates r,0 by the expression:

(2 2) S_g 270(7:?2_’;2)0050-{—}"6(27’—;/;)[4(’,.62_’;2)00529_{_5’;2_4’;’;}%
| o 4(r,2—r2)coszt9+(r,_2,f)2

>

in which the angle § corresponds to the third invariant of deviator; 7, and r, are devi-
atoric sectional radii. Deviatoric sectional radius 7, is determined by the parameters
ay,d,,a, selected in such a way that £, f.,, f; are located on the limit surface. The second
deviatoric sectional radius 7, is expressed by the parameters by,b,,b, determined from
the compression along the meridian for an angle 6 = 60° .

In the state of tension — compression — compression, function £ is written in the form:

1

2.3) F=F=—|(0,-0,) +ai+a1 [,

and § is defined by the equation:

2

24) 5=$ :[1_5] 2p,(p2 = P} )oos0+p. (2p, - p.)| 4(p? - p} )oos’ 0+5p! ~4p,p, |
2 4(pf—p,2)cos20+(pc—2pt)2 :

In the Eq. (2.4), p, and p, are given by formulas:

p=atay+ay’, p.=by+by+by’.

in which ay,a,,a, and b,,b,,b, are defined as in the Eq. (2.2), whereas y is
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1
7= 3(0'2 +0,).
In the state of tension — tension — compression, functions £ and S adopt the forms:

. /, o
(25) F=F3=61.,1=1,2, S:S3:7 1+7(3 .

c

In the state tension — tension — tension, functions F and S are defined as:
_F e i o _ )
(2.6) F=F=0,i=123, S—S4_7.

More details about the limt surface of concrete were presented by Smarzewski in [14].
Uniaxial stress-strain relationships for concrete in compression and in tension, and for
reinforcing steel in tension are presented in Figure 4.

Stress-strain characteristic for concrete in compression 6, — ¢, was adopted in nu-
merical simulation on the basis of the Desayi and Krishnan proposition presented in
[15]:

where: ¢, is the strain corresponding to the limit compressive strength . and £, is the
modulus of elasticity for concrete.

In Figure 4a, the strain in point 1 indicates the end of the region of non-cracked concrete
elasticity. After reaching point 4, perfectly-plastic behavior of concrete is assumed. In
the description of tensile concrete (Figure 4b), the stiffness multiplier for cracked ten-
sile condition, 7, =0.6, is used to include tensile stress relaxation after cracking. The
softening effect of tensile concrete is considered by using the declining stress curve
characterized by R,. The steel is assumed to be a multilinear isotropic hardening mate-
rial as presented in Figure 4c.
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Fig. 4. Stress-strain relationships for materials: a) concrete in compression, b) concrete in tension, c) steel
reinforcement in tension

In FEM-calculations, cracking occurred in the concrete element when tensile stress
in any direction laid outside the failure surface, and then elastic modulus in the direction
parallel to the principal tensile stress direction fell down to zero. Crushing occurred
when three principal compressive stress components were outside the failure surface
and then the element effectively disappeared. A cracking sign was represented by a cir-
cle (as shown in Figure 5) and it appeared at the integration point when principal tensile
stress reached the ultimate concrete tensile strength. If any crack opened and closed, it
was shown as a circle with a cross inscribed in the graphical representation of the crack.
Cracks at any point of numerical integration were marked as the circles of different
colours: red for the first crack, green for the second crack, blue for the third crack.
Crushing of the material was presented as the octahedron. The sign described in the
middle element showed the actual status of the destruction of the material in the finite
element. For the numerical balance in the finite element in the state of concrete cracking
or crushing, a small value of stiffness was added.
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A cracking sign

principal stress|direction
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Fig. 5. Cracking outline

The matrix of elasticity for an isotropic material D, is represented in the form:

I-v, v, . 0 0 0
v, 1l-v, . 0 0
v, v, l-v, 0 0 0
1-2v
. 0 0 0 <0 0
D:— 9
@7 D (1+v,)(1-2v,) 2 -
0 0 0 0 —ZYe
2
1-2
0 0 0 0 0 Y
L 2

where v, is the Poisson’s ratio.

The creation of a crack at the point of numerical integration was described by modified
stiffness matrix in which the weakened plane located perpendicular to the cracking sur-
face was incorporated. The parameter f, is a multiplier used for reducing shear transfer
causing slip in the plane perpendicular to the surface cracks. The relationship between
stress and strain of the material cracked in one plane is written in the form of a matrix:
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R (1+v,)
< 0 0O 0 O
EC
0 ! e 9 0 o0
l-v, 1-v,
1% 1
0 < 0O 0 O
(28) DCk = —EC 1 - V[ 1 - Vc
¢ 14y, B
0 0 0 =~ 0 0
2
1
0 0 0 0O — O
2
0 0 0 0 O ﬁ
L 2 |

All the compressive normal stresses in the cracked plane are transferred across the
crack during its closing. In the matrix D shear parameter S, is introduced, when the
cracks close:

I-v, v, v, 0 0 0
A e N 0 0
v, v, l-v, 0 0 0
(2.9) p* . 0 0 o A=) 0
(v (1-2v,) 2
0 0 0 0 1-2v, 0
2
o 0 0 0 0 ﬁ“(lfvc)

Stiffness matrix for concrete cracked in two and three dimensions is of the form:
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ﬁ 0 0 0 0 0

E,

0 ﬁ 0 0 0 0

EL‘
0 0 1 0 0 0
ck _
2(1+v(_)
0 0 0 0 L 0
2(1+v,)

0 0 0 0 0 L
i 2(1+v,) |

When the cracks close in two or three planes, the relationship is expressed in a matrix
form Eq. (2.9). The relationship between stress and strain for concrete cracked in three
dimensions is written as a matrix Eq. (2.10).

The matrix element D is used to transform the local coordinate system to the
global one:

Dc — TckTTcszk ,

where T is the transformation described by Suidan and Schnobrich [16].

Opening or closing of cracks at the point of numerical integration depends on the
sign of the cracking strain. A crack is closed when the value of the cracking strain &
is less than zero, and it is opened in the opposite case. The shear transfer coefficient
£,=0,5 is used to represent shear strength reduction for the load of a sliding develop-
ment and the shear transfer coefficient 5. = 0,9 is used to initiate crack’s closing. Con-
crete crushing at the point of numerical integration occurs when it is destructive upon
uniaxial, biaxial and triaxial compression. Crushing in the finite element is described
on the basis of the plastic flow theory. In the area of crushed material, a further load
increase causes strain growth at the constant residual stress.

To solve the FEM-system of equations, the Newton-Raphson method was applied,
as described by Bathe [17], Zienkiewicz and Taylor [18], Bonet and Wood [19], Cris-
field [20]. After meshing into finite elements, the following system of algebraic equa-
tions was created:

Ku = F°,
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in which K is the coefficient matrix; u is the generalized displacement vector in three
orthogonal directions; F“ is the generalized load vector.
Newton-Raphson method represents an iterative process of solving nonlinear equations:

2.11) K'Au, =F'-F"

(2.12) U, =u +Au,,

where: K is the tangent stiffness matrix; index i corresponds to the number of the
incremental step; F" is the vector of restoring loads representing the element internal
loads in the discretized system. The method is shown graphically in Figure 6:

iteration 2
iteration 3

nr
Fi Aul+1 >
AU, R
5 ~ >
u, u,, u,, u,; displacement, u

Fig. 6. Newton-Raphson method

Matrix K| and vector F" are calculated on the basis of the displacement vector u,. The
right side of Eq. (2.11) is called the unbalanced load vector. The solution is converged
as a result of at least one iteration, when the vector of internal nodal forces F"at the
current state of stress is equal to a generalized load vector F* or 3 tolerance of solution
is maintained.

3. ResuLts AND DiscussioN

As a result of FEM calculations, the dislocations of nodes and stress components
along three axes of the global coordinate system were obtained. On the basis of the
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numerical results, trajectories of total strains were generated by ANSYS program. The
trajectories for both beams, the beam S3k of /,;= 1.1 m and the S5 of /= 1.8 m, in
the subsequent load stages are presented in Figure 7. The trajectories indicated also the
view of principal stress streams in the analyzed beams. When comparing strain distri-
bution in the short beam and in the longer beam we can observe some differences in the
damage process depending on the beam’s length. These differences can be noticed when
the evaluations of crack patterns are juxtaposed (see Figure 8). Here we can analyze
very precisely the process of cracks evaluation. The first cracks occurred in the middle
of the beam span and they propagated in the vertical direction. When the load reached
approximately 40 kN the shear stress made some flexural cracks in the shear regions
change their orientation and become diagonal cracks. With the further load increase, the
compressive cracks appeared in the region where the load was applied. A similar cracks
evaluation was observed during the test.

F.=20,1 kN

.1952-06 .4258-04 .848E-04 .1278-03 -169E-03 .1382-05 .3882-03 775203 .001162 .001549
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-n

(o]
o
~
=2

|

.361E-06 .226E-03 .4528-03 679203 - 905E-03 .1882-05 .461E-03 919203 .001378 .001837
.1138-03 .339E-03 .566E-03 .792E-03 .001018 .2312-03 .6902-03 .001149 .001607 002066

|
|

F,=17,7 kN F=60 kN

v _

.1722-08 .3882-0¢ 774E-04 Tiez-03 _1558-03 .1388-05 +3438-03 .6858-03 001027 -001369
.1958-0¢ .5812-04 .9672-04 135203 174803 .1722-03 .5142-03 856203 .001108 .00154

F=50 KN

—
.342E-05 .2145-03 .4282-03 641E-03 .8552-03 .187E-05 +2738-03 .5448-03 815E-03 001086
.1078-03 .3218-03 .5358-03 +748E-03 .9628-03 137803 -4088-03 .679E-03 .9502-03 .001221

Fig. 7. Strain trajectories for beams S3k and S5 at different load levels
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Fig. 8. Evolution of crack patterns for beams S3k and S5

According to the obtained strain distributions, the following zones of stress state can
be distinguished in the beams: bending zone in the mid span; shear-bending zone in the
region of diagonal cracks; shear-compression zone in the upper part of the beam near
the applied forces. The intensity of strain in the following zones indicated what kind of
damage process predominated in the beams. The increase of strains in the shear-bending
zone was more intensive in the beam S5, which marked sudden failure. A similar obser-
vation was made during the experiment where the failure had more brittle character in
the longer beam.

A good agreement is also seen when comparing the numerical images of smeared
cracks and the strain distribution with the final crack patterns observed during the ex-
periment under ultimate load (see Figure 9). It can be concluded that the numerical
model, which was used in the numerical simulation, can be applied for the analysis of
diagonal cracks in reinforced concrete members.

It was observed that the FEM-calculations were in good agreement with the experi-
mental results for both analyzed beams. In the numerical simulation, a lower deflection
in the middle of the beam was obtained in the beam S5 compared to the short beam
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S3k. This fact can be explained by the lower stiffness in the beam S5 due to the greater
number of flexural vertical cracks which penetrated deeper in the beam S5 compared
to the short beam S3k. The numerical simulation yielded very similar results as the
experiments and it confirmed that the character of failure process altered according to

the effective length of the member.
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Fig. 9. Cracks pattern — comparison of numerical and experimental results
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4. CONCLUSIONS

In this paper, the procedure for numerical modeling of diagonal cracks in concrete
beams has been presented. The numerical results obtained for two beams of different
L were successfully confronted with the experimental results. The strain trajectories
describe accurately the crack development in the beams. It can be concluded that the
numerical model, which was used in numerical simulation, can be applied for analysis
of diagonal cracks in reinforced concrete members.

Although the applied model gives realistic results, the authors plan to improve the
numerical simulation. It has been noticed that the Newton-Raphson method, which was
used in the performed numerical analysis, has some disadvantages. It is not adequate for
materials of higher nonlinear characteristic. The experimental investigation performed
by Ashour [21], Rashid and Mansur [22], showed that stress in the tension zone after
cracking was not compensated by elastic steel response and plastic concrete response
in compression zone, and therefore some softening effects were observed on load-de-
flection curve as a rapid decrease of load. In numerical simulations those effects can be
obtained by using an arc-length algorithm described by Riks [23] and Crisfield [24].
This algorithm allows generating a complete path of solution with local stiffness de-
crease and global softening.

Further research should be encouraged to analyze the diagonal crack propagation
process in longitudinally reinforced concrete members. It is planned to use the arc-
length method described by Crisfield [24] in combination with the Newton-Raphson
method, to trace the complete response in load-deformation space. It seems that this
modified method can be effectively applied to the static deformation mechanism analy-
sis of various reinforced concrete members under complex stress states.
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