Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 1, 2007

Diving behavior reduces genera richness of lice (Insecta, Phthiraptera) of mammals

  • Bernadett Felső EMAIL logo and Lajos Rózsa
From the journal Acta Parasitologica

Abstract

Lice of mammals spend the entire life cycle in the host hair, thus, the microclimate found near the mammal skin is likely to influence the structure of louse communities. Here we use a comparative approach to examine the effect of mammals’ diving behavior on the taxonomic richness of their lice. We compared the mean genera richness of lice, and — as potential confounding variables — the mean species richness of host, and the mean body mass of host between diving clades and their non-diving sister clades. Louse genera richness was significantly lower in clades of aquatic mammals than on their non-diving sister clades. Host species richness was not significantly different between these clades. Body mass was significantly higher in clades of aquatic mammals, however, the direction of this difference cannot explain the difference in parasite taxonomic richness. This study suggests that mammals’ diving behavior can effectively shape their ectoparasite communities.

[1] Arnason U., Janke A. 2002. Mitogenomic analyses of eutherian relationship. Cytogenetic and Genom Research, 96, 20–32. http://dx.doi.org/10.1159/00006302310.1159/000063023Search in Google Scholar PubMed

[2] Bininda-Emonds O.R., Gittleman J.L., Purvis A. 1999. Building large trees by combining phylogenetic information: complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews, 74, 143–175. http://dx.doi.org/10.1017/S000632319900530710.1017/S0006323199005307Search in Google Scholar

[3] Cardillo M., Bininda-Emonds O.M., Boakes E., Purvis A. 2004. A species-level phylogenetic supertree of marsupials. Journal of Zoology, 264, 11–31. http://dx.doi.org/10.1017/S095283690400553910.1017/S0952836904005539Search in Google Scholar

[4] Clay T. 1964. Geographical distribution of the Mallophaga (Insecta). Bulletin B.O.C., 84, 14–16. Search in Google Scholar

[5] Clayton D.H., Walther B.A. 2001. Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos, 94, 455–467. http://dx.doi.org/10.1034/j.1600-0706.2001.940308.x10.1034/j.1600-0706.2001.940308.xSearch in Google Scholar

[6] Csorba G. 1995. Mammals. In: Zootaxonomia (Ed. L. Papp). Budapest (In Hungarian). Search in Google Scholar

[7] Dalgleish B. 2005. Available from http://www.phthiraptera.org (cited 08 September 2005). Search in Google Scholar

[8] Felsenstein J. 1985. Phylogenies and the comparative method. American Naturalist, 125, 1–15. http://dx.doi.org/10.1086/28432510.1086/284325Search in Google Scholar

[9] Felső B., Rózsa L. 2006. Reduced taxonomic richness of lice (Insecta: Phthiraptera) in diving birds. Journal of Parasitology, 92, 867–869. http://dx.doi.org/10.1645/GE-849.110.1645/GE-849.1Search in Google Scholar PubMed

[10] Grafen A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society, B, 326, 119–157. Search in Google Scholar

[11] Grenyer R., Purvis A. 2003. A composite species-level phylogeny of the ‘Insectivora’ (Mammalia: Order Lipotyphla Haeckel, 1866). Journal of Zoology, 260, 245–257. http://dx.doi.org/10.1017/S095283690300371610.1017/S0952836903003716Search in Google Scholar

[12] Jansa S.A., Weksler M. 2004. Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution, 31, 256–276. http://dx.doi.org/10.1016/j.ympev.2003.07.00210.1016/j.ympev.2003.07.002Search in Google Scholar PubMed

[13] Johnson K.P., Clayton D.H. 2003. The biology, ecology, and evolution of chewing lice. In: The chewing lice: world checklist and biological overview (Eds. R.D. Price, R.A. Hellenthal, R.L. Palma, K.P. Johnson and D.H. Clayton). Illinois Natural History Survey Special Publication, 24. Search in Google Scholar

[14] Klassen G.J. 1992. Coevolution: a history of the macroevolutionary approach to studying host-parasite associations. Journal of Parasitology, 78, 573–587. http://dx.doi.org/10.2307/328353210.2307/3283532Search in Google Scholar

[15] Liu F.R., Miyamoto M.M., Freire N.P., Ong P.Q., Tennant M.R., Young T.S., Gugel K.F. 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science, 291, 1786–1789. http://dx.doi.org/10.1126/science.105634610.1126/science.1056346Search in Google Scholar PubMed

[16] Luo J., Yang D., Suzuki H., Wang Y., Chen W., Campbell K.L., Zhang Y. 2004. Molecular phylogeny and biogeography of Oriental voles: genus Eothenomys (Muridae, Mammalia). Molecular Phylogenetics and Evolution, 33, 349–362. http://dx.doi.org/10.1016/j.ympev.2004.06.00510.1016/j.ympev.2004.06.005Search in Google Scholar

[17] Møller A.P., Rózsa L. 2005. Parasite biodiversity and host defenses: Chewing lice and immune response of their avian hosts. Oecologia, 142, 169–176. http://dx.doi.org/10.1007/s00442-004-1735-810.1007/s00442-004-1735-8Search in Google Scholar

[18] Moyer B.R., Drown D.M., Clayton D.H. 2002. Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos, 97, 223–228. http://dx.doi.org/10.1034/j.1600-0706.2002.970208.x10.1034/j.1600-0706.2002.970208.xSearch in Google Scholar

[19] Paterson A.M., Palma R.L., Gray E.R. 1999. How frequently do avian lice missing the boat? Implications for coevolutionary studies. System of Biology, 48, 214–223. http://dx.doi.org/10.1080/10635159926054410.1080/106351599260544Search in Google Scholar

[20] Price R.D., Hellenthal R.A., Palma R.L. 2003. World checklist of chewing lice with host. In: The chewing lice: world checklist and biological overview (Eds. R.D. Price, R.A. Hellenthal, R.L. Palma, K.P. Johnson and D.H. Clayton). Illinois Natural History Survey Special Publication, 24. Search in Google Scholar

[21] Rózsa L. 1993. Speciation patterns of ectoparasites and “straggling” lice. International Journal for Parasitology, 23, 859–864. http://dx.doi.org/10.1016/0020-7519(93)90050-910.1016/0020-7519(93)90050-9Search in Google Scholar

[22] Rózsa L. 1997. Patterns in abundance of avian lice (Phthiraptera: Amblycera, Ischnocera). Journal of Avian Biology, 28, 249–254. http://dx.doi.org/10.2307/367697610.2307/3676976Search in Google Scholar

[23] Silva M., Downing J.A. 1995. CRC handbook of mammalian body masses. CRC Press Inc., Boca Raton, Florida. Search in Google Scholar

Published Online: 2007-3-1
Published in Print: 2007-3-1

© 2007 W. Stefański Institute of Parasitology, PAS

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11686-007-0006-3/html
Scroll to top button