Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 29, 2007

Syntaxin 8 has two functionally distinct di-leucine-based motifs

  • Kazuo Kasai EMAIL logo , Kei Suga , Tetsuro Izumi and Kimio Akagawa

Abstract

Syntaxin 8 has been shown to form the SNARE complex with syntaxin 7, vti1b and endobrevin. These have been shown to function as the machinery for the homotypic fusion of late endosomes. Recently, we showed that syntaxins 7 and 8 cycle through the plasma membrane, and that the di-leucine-based motifs in the cytoplasmic domain of syntaxins 7 and 8 respectively function in their endocytic and exocytic processes. However, we could not elucidate the mechanism by which syntaxin 8 cycles through the plasma membrane. In this study, we constructed several different syntaxin 8 molecules by mutating putative di-leucine-based motifs, and analyzed their intracellular localization and trafficking. We found a di-leucine-based motif in the cytoplasmic domain of syntaxin 8. It is similar to that of syntaxin 7, and functions in its endocytosis. These results suggest that in the cytoplasmic domain, syntaxin 8 has two functionally distinct di-leucine-based motifs that act independently in its endocytic and exocytic processes. This is the first report on two di-leucine-based motifs in the same molecule acting independently in distinct transport pathways.

[1] Palade, G. Intracellular aspects of the process of protein synthesis. Science 189 (1975) 347–358. http://dx.doi.org/10.1126/science.109630310.1126/science.1096303Search in Google Scholar

[2] Pryer, N.K., Wuestehube, L.J. and Schekman, R. Vesicle-mediated protein sorting. Annu. Rev. Biochem. 61 (1992) 471–516. http://dx.doi.org/10.1146/annurev.bi.61.070192.00235110.1146/annurev.bi.61.070192.002351Search in Google Scholar

[3] Rothman, J.E. and Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4 (1994) 220–233. http://dx.doi.org/10.1016/S0960-9822(00)00051-810.1016/S0960-9822(00)00051-8Search in Google Scholar

[4] Rothman, J.E. and Wieland, F.T. Protein sorting by transport vesicles. Science 272 (1996) 227–234. http://dx.doi.org/10.1126/science.272.5259.22710.1126/science.272.5259.227Search in Google Scholar

[5] Schekman, R. and Orci, L. Coat proteins and vesicle budding. Science 271 (1996) 1526–1533. http://dx.doi.org/10.1126/science.271.5255.152610.1126/science.271.5255.1526Search in Google Scholar

[6] Clary, D.O., Griff, I.C. and Rothman, J.E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61 (1990) 709–721. http://dx.doi.org/10.1016/0092-8674(90)90482-T10.1016/0092-8674(90)90482-TSearch in Google Scholar

[7] Graham, T.R. and Emr, S.D. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J. Cell Biol. 114 (1991) 207–218. http://dx.doi.org/10.1083/jcb.114.2.20710.1083/jcb.114.2.207Search in Google Scholar

[8] Griff, I.C., Schekman, R., Rothman, J.E. and Kaiser, C.A. The yeast SEC17 gene product is functionally equivalent to mammalian alpha-SNAP protein. J. Biol. Chem. 267 (1992) 12106–12115. Search in Google Scholar

[9] Bennett, M.K. and Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90 (1993) 2559–2563. http://dx.doi.org/10.1073/pnas.90.7.255910.1073/pnas.90.7.2559Search in Google Scholar

[10] Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. and Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75 (1993) 409–418. http://dx.doi.org/10.1016/0092-8674(93)90376-210.1016/0092-8674(93)90376-2Search in Google Scholar

[11] Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. and Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature 362 (1993) 318–324. http://dx.doi.org/10.1038/362318a010.1038/362318a0Search in Google Scholar PubMed

[12] McNew, J.A., Parlati, F., Fukuda, R., Johnston, R.J., Paz, K., Paumet, F., Söllner, T.H. and Rothman, J.E. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407 (2000) 153–159. http://dx.doi.org/10.1038/3502500010.1038/35025000Search in Google Scholar

[13] Parlati, F., McNew, J.A., Fukuda, R., Miller, R., Söllner, T.H. and Rothman, J.E. Topological restriction of SNARE-dependent membrane fusion. Nature 407 (2000) 194–198. http://dx.doi.org/10.1038/3502507610.1038/35025076Search in Google Scholar

[14] Fukuda, R., McNew, J. A., Weber, T., Parlati, F., Engel, T., Nickel, W., Rothman, J.E. and Söllner, T.H. Functional architecture of an intracellular membrane t-SNARE. Nature 407 (2000) 198–202. http://dx.doi.org/10.1038/3502508410.1038/35025084Search in Google Scholar

[15] Trowbridge, I.S., Collawn, J.F. and Hopkins, C.R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9 (1993) 129–161. http://dx.doi.org/10.1146/annurev.cb.09.110193.00102110.1146/annurev.cb.09.110193.001021Search in Google Scholar

[16] Sandoval, I.V. and Bakke, O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol. 4 (1994) 292–297. http://dx.doi.org/10.1016/0962-8924(94)90220-810.1016/0962-8924(94)90220-8Search in Google Scholar

[17] Letourner, F. and Klausner, R.D. A novel di-leucine motif and a tyrosinebased motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69 (1992) 1143–1157. http://dx.doi.org/10.1016/0092-8674(92)90636-Q10.1016/0092-8674(92)90636-QSearch in Google Scholar

[18] Bremnes, B., Madsen, T., Gedde-Dahl, M. and Bakke, O. A LI and ML motif in the cytoplasmic tail of MHC-associated invariant chain mediate rapid internalization. J. Cell Sci. 107 (1994) 2021–2032. Search in Google Scholar

[19] Pond, L., Kuhn, L., Teyton, L., Schutze, M.P., Tainer, J.A., Jackson, M.R. and Peterson, P.A. A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J. Biol. Chem. 270 (1995) 19989–19997. http://dx.doi.org/10.1074/jbc.270.34.1998910.1074/jbc.270.34.19989Search in Google Scholar PubMed

[20] Simmen, T., Schmidt, A., Hunziker, W. and Beermann, F. The tyrosinase tail mediates sorting to the lysosomal compartment in MDCK cells via a dileucine and tyrosine-based signal. J. Cell Sci. 112 (1999) 45–53. Search in Google Scholar

[21] Li, Y., Marzolo, M.P., Van Kerkhof, P., Strous, G.J. and Bu, G. The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J. Biol. Chem. 275 (2000) 17187–17194. http://dx.doi.org/10.1074/jbc.M00049020010.1074/jbc.M000490200Search in Google Scholar PubMed

[22] Johnson, K. and Kornfeld, S. The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi. J. Cell Biol. 119 (1992) 249–257. http://dx.doi.org/10.1083/jcb.119.2.24910.1083/jcb.119.2.249Search in Google Scholar PubMed PubMed Central

[23] Wong, S.H., Xu, Y., Zhang, T. and Hong, W. Syntaxin 7, a novel syntaxin member associated with the early endosomal compartment. J. Biol. Chem. 273 (1998) 375–380. http://dx.doi.org/10.1074/jbc.273.1.37510.1074/jbc.273.1.375Search in Google Scholar PubMed

[24] Nakamura, N., Yamamoto, A., Wada, Y. and Futai, M. Syntaxin 7 mediates endocytic trafficking to late endosomes. J. Biol. Chem. 275 (2000) 6523–6529. http://dx.doi.org/10.1074/jbc.275.9.652310.1074/jbc.275.9.6523Search in Google Scholar PubMed

[25] Prekeris, R., Yang, B., Oorschot, V., Klumperman, J. and Scheller, R.H. Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol. Biol. Cell 10 (1999) 3891–3908. Search in Google Scholar

[26] Subramaniam, V.N., Loh, E., Horstmann, H., Habermann, A., Xu, Y., Coe, J., Griffiths, G. and Hong, W. Preferential association of syntaxin 8 with the early endosome. J. Cell Sci. 113 (2000) 997–1008. Search in Google Scholar

[27] Antonin, W., Holroyd, C., Fasshauer, D., Pabst, S., Von Mollard, G.F. and Jahn, R. A SNARE complex mediating fusion of late endosomes defines conserved propaties of SNARE structure and function. EMBO J. 19 (2000) 6453–6464 http://dx.doi.org/10.1093/emboj/19.23.645310.1093/emboj/19.23.6453Search in Google Scholar PubMed PubMed Central

[28] Kasai, K. and Akagawa, K. Roles of the cytoplasmic and transmembrane domains of syntaxins in intracellular localization and trafficking. J. Cell Sci. 114 (2001) 3115–3124. Search in Google Scholar

[29] Shin, H.W., Shinotsuka, C., Torii, S., Murakami, K. and Nakayama, K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. (Tokyo) 122 (1997) 525–530. Search in Google Scholar

[30] Torii, S., Banno, T., Watanabe, T., Ikehara, Y., Murakami, K. and Nakayama, K. Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J. Biol. Chem. 270 (1995) 11574–11580. http://dx.doi.org/10.1074/jbc.270.19.1157410.1074/jbc.270.19.11574Search in Google Scholar PubMed

[31] Thoreau, V., Bergès, T., Callebaut, I., Guillier-Gencik, Z., Gressin, L., Bernheim, A., Karst, F., Mornon, J.P., Kitzis, A. and Chomel, J.C. Molecular cloning, expression analysis, and chromosomal localization of human syntaxin 8 (STX8). Biochem. Biophys. Res. Commun. 257 (1999) 577–583. http://dx.doi.org/10.1006/bbrc.1999.050310.1006/bbrc.1999.0503Search in Google Scholar PubMed

[32] Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 1744 (2005) 465–517. http://dx.doi.org/10.1016/j.bbamcr.2005.06.00610.1016/j.bbamcr.2005.06.006Search in Google Scholar PubMed

[33] Heilker, R., Manning-Krieg, U., Zuber, J.F. and Spiess, M. In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J. 15 (1996) 2893–2899. Search in Google Scholar

[34] Darsow, T., Burd, C.G. and Emr, S.D. Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3p vacuolar t-SNARE. J. Cell Biol. 142 (1998) 913–922. http://dx.doi.org/10.1083/jcb.142.4.91310.1083/jcb.142.4.913Search in Google Scholar PubMed PubMed Central

[35] Höning, S., Sandoval, I.V. and Von Figura, K.A. Di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17 (1998) 1304–1314. http://dx.doi.org/10.1093/emboj/17.5.130410.1093/emboj/17.5.1304Search in Google Scholar PubMed PubMed Central

[36] Pearse, B.M. and Robinson, M.S. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6 (1990) 151–171. http://dx.doi.org/10.1146/annurev.cb.06.110190.00105510.1146/annurev.cb.06.110190.001055Search in Google Scholar PubMed

[37] Chao, D.S., Hay, J.C., Winnick, S., Prekeris, R., Klumperman, J. and Scheller, R.H. SNARE membrane trafficking dynamics in vivo. J. Cell Biol. 144 (1999) 869–881. http://dx.doi.org/10.1083/jcb.144.5.86910.1083/jcb.144.5.869Search in Google Scholar PubMed PubMed Central

Published Online: 2007-10-29
Published in Print: 2008-3-1

© 2007 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-007-0043-9/html
Scroll to top button