Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 24, 2014

Non-volant modes of migration in terrestrial arthropods

  • Don R. Reynolds EMAIL logo , Andrew M. Reynolds and Jason W. Chapman
From the journal Animal Migration

Abstract

Animal migration is often defined in terms appropriate only to the ‘to-and-fro’ movements of large, charismatic (and often vertebrate) species. However, like other important biological processes, the definition should apply over as broad a taxonomic range as possible in order to be intellectually satisfying. Here we illustrate the process of migration in insects and other terrestrial arthropods (e.g. arachnids, myriapods, and non-insect hexapods) but provide a different perspective by excluding the ‘typical’ mode of migration in insects, i.e. flapping flight. Instead, we review non-volant migratory movements, including: aerial migration by wingless species, pedestrian and waterborne migration, and phoresy. This reveals some fascinating and sometimes bizarre morphological and behavioural adaptations to facilitate movement. We also outline some innovative modelling approaches exploring the interactions between atmospheric transport processes and biological factors affecting the ‘dispersal kernels’ of wingless arthropods

References

[1] Johnson C.G., Migration and dispersal of insects by flight, Methuen, London, 1969Search in Google Scholar

[2] Dingle H., Migration: the biology of life on the move, Oxford University Press, Oxford, UK, 1996Search in Google Scholar

[3] Anderson R.C., Do dragonflies migrate across the western Indian Ocean? J. Trop. Ecol., 2009, 25, 347-34810.1017/S0266467409006087Search in Google Scholar

[4] Stefanescu C., Páramo F., Akesson S., Alarcón M., Ávila A., Brereton T., et al., Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic, Ecography, 2013, 36, 474-48610.1111/j.1600-0587.2012.07738.xSearch in Google Scholar

[5] Chapman J.W., Bell J.R., Burgin L.E., Reynolds D.R., Pettersson L.B., Hill J.K., et al., Seasonal migration to high latitudes results in major reproductive benefits in an insect, Proc. Natl Acad. Sci. USA, 2012, 109, 14924-1492910.1073/pnas.1207255109Search in Google Scholar PubMed PubMed Central

[6] Kennedy, J.S., Migration, behavioural and ecological. Pages 5-26 in Rankin M.A. (Ed.), Migration: Mechanisms and Adaptive Significance, Contributions in Marine Science, 27 (Supplement),1985Search in Google Scholar

[7] Yanoviak S.P., Kaspari M., Dudley R., Gliding hexapods and the origins of insect aerial behaviour, Biol. Lett., 2009, 5, 510-51210.1098/rsbl.2009.0029Search in Google Scholar PubMed PubMed Central

[8] Yanoviak S.P., Munk Y., Kaspari M., Dudley, R., Aerial maneuverability in wingless gliding ants (Cephalotes atratus), Proc. R. Soc. Lond. B, 2010, 277, 2199-220410.1098/rspb.2010.0170Search in Google Scholar PubMed PubMed Central

[9] Chapman J.W., Drake V.A., Reynolds D.R., Recent insights from radar studies of insect flight, 2011, 56, 337-35610.1146/annurev-ento-120709-144820Search in Google Scholar PubMed

[10] Drake V.A., Reynolds D.R., Radar entomology: observing insect flight and migration, CABI, Wallingford, UK, 201210.1079/9781845935566.0000Search in Google Scholar

[11] Chapman J.W., Klaassen R.H.G., Drake V.A., Fossette S., Hays G.C., Metcalfe J.D., et al., Animal orientation strategies for movement in flows, Curr. Biol., 2011, 21, R861-R87010.1016/j.cub.2011.08.014Search in Google Scholar PubMed

[12] Dingle H., Drake V.A., What is migration? BioScience, 2007, 57, 113-12110.1641/B570206Search in Google Scholar

[13] Chapman J.W., Drake V.A., Insect migration, Pages161-166 in Breed M.D., Moore J. (Eds), Encyclopedia of Animal Behavior, vol. 2, Academic Press, Oxford, UK, 201010.1016/B978-0-08-045337-8.00073-5Search in Google Scholar

[14] Bell J.R., Bohan D.A., Shaw E.M., Weyman G.S., Ballooning dispersal using silk: world fauna, phylogenies, genetics and models, Bull. Entomol. Res., 2005, 95, 69-11410.1079/BER2004350Search in Google Scholar

[15] Szymkowiak P., Górski G., Bajerlein D., Passive dispersal in arachnids, Biological Lett. (Poland), 2007, 44, 75-101Search in Google Scholar

[16] Schneider, J.M., Roos, J., Lubin, Y., Henschel, J.R., Dispersal in Stegodyphus dumicola (Araneae, Eresidae): they do balloon after all! J. Arachnol. 29, 2001, 114-11610.1636/0161-8202(2001)029[0114:DOSDAE]2.0.CO;2Search in Google Scholar

[17] Coyle F.A., Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae), J. Arachnol., 1983, 11, 283-286Search in Google Scholar

[18] McManus M.L., Weather, behaviour and insect dispersal, Mem. Entomol. Soc. Can. 1988, 146, 71-9410.4039/entm120146071-1Search in Google Scholar

[19] Rhainds M., Davis D.R., Price P.W., Bionomics of bagworms (Lepidoptera: Psychidae), Annu. Rev. Entomol., 2009, 54, 209-22610.1146/annurev.ento.54.110807.090448Search in Google Scholar

[20] Moore, R.G., Hanks, L.M., Aerial dispersal and host plant selection by neonate Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae), Ecol. Entomol., 2004, 29, 327-33510.1111/j.0307-6946.2004.00611.xSearch in Google Scholar

[21] Fleschner C.A., Badgley M.E., Ricker D.W., Hall J.C., Air drift of spider mites, J. Econ. Entomol., 1956, 49, 624-62710.1093/jee/49.5.624Search in Google Scholar

[22] Kennedy G.G., Smitley D.R., Dispersal. Pages 233-242 in Helle W., Sabelis M.W. (Eds), Spider mites: their biology, natural enemies and control, vol. 1A, Elsevier, Amsterdam, 1985Search in Google Scholar

[23] Smitley D.R., Kennedy G.G., Photo-orientated aerial-dispersal behaviour of Tetranychus urticae (Acari: Tetranychidae) enhances escape from the leaf surface, Ann. Entomol. Soc. Am. 1985, 78, 609-61410.1093/aesa/78.5.609Search in Google Scholar

[24] Hussey N.W., Parr W.J., Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina: Tetranychidae), Entomol. Exp. Appl. 1963, 6, 207-21410.1111/j.1570-7458.1963.tb00619.xSearch in Google Scholar

[25] Liebhold A.M., Halverson J.A., Elmes G.A., Gypsy moth invasion in North America: a quantitative analysis, J. Biogeogr., 1992, 19, 513-520.10.2307/2845770Search in Google Scholar

[26] Wainhouse D., Ecological methods in forest pest management, Oxford University Press, Oxford, UK, 200510.1093/acprof:oso/9780198505648.001.0001Search in Google Scholar

[27] Pugh P.J.A., Have mites (Acarina: Arachnida) colonised Antarctica and the islands of the Southern Ocean via air currents? Polar Rec., 2003, 39, 239-24410.1017/S0032247403003097Search in Google Scholar

[28] Reynolds A.M., Bohan D., Bell J.R., Ballooning dispersal in arthropod taxa: conditions at take-off, Biol. Lett., 2007, 3, 237-24010.1098/rsbl.2007.0109Search in Google Scholar PubMed PubMed Central

[29] Reynolds A.M., Bohan D.A., Bell J.R., Ballooning dispersal in arthropod taxa with convergent behaviours: dynamic properties of ballooning silk in turbulent flows, Biol. Lett. 2006, 2, 371-37310.1098/rsbl.2006.0486Search in Google Scholar PubMed PubMed Central

[30] Barth F.G., Komarek S., Humphrey J.A.C., Treidler B., Drop and swing dispersal behavior of a tropical wandering spider: experiments and numerical model. J. Comp. Physiol. A, 1991, 169, 313-32210.1007/BF00206995Search in Google Scholar

[31] Moran V.C., Gunn B.H., Walter G.H., Wind dispersal and settling of first crawlers of the cochineal insect Dactylopius austrinus (Homoptera: Coccoidea: Dactylopiidae), Ecol. Entomol., 1982, 7, 409-41910.1111/j.1365-2311.1982.tb00683.xSearch in Google Scholar

[32] Frost W.E., Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness, Physiol. Entomol., 1997, 22, 37-4610.1111/j.1365-3032.1997.tb01138.xSearch in Google Scholar

[33] Hanks L.M., Denno R.F., Dispersal and adaptive deme formation in sedentary coccoid insects. Pages 239-262 in S. Mopper, S.Y. Strauss (Eds), Genetic structure and local adaptation in natural insect populations: effects of ecology, life history, and behaviour, Chapman & Hall, New York, 199810.1007/978-1-4757-0902-5_11Search in Google Scholar

[34] Lehmitz R., Russell D., Hohberg K., Christian A., Xylander W.E.R., Wind dispersal of oribatid mites as a mode of migration, Pedobiologia, 2011, 54, 201-20710.1016/j.pedobi.2011.01.002Search in Google Scholar

[35] Washburn J.O., Washburn L., Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients, Science, 1984, 223, 1088-108910.1126/science.223.4640.1088Search in Google Scholar PubMed

[36] Jung C., Croft, B.A., Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females, Oikos 2001, 94,182-19010.1034/j.1600-0706.2001.11044.xSearch in Google Scholar

[37] Johnson D.T., Croft B.A., Laboratory study of the dispersal behaviour of Amblyseius fallacis (Acarina: Phytoseiidae), Ann. Entomol. Soc. Am., 1976, 69, 1019-102310.1093/aesa/69.6.1019Search in Google Scholar

[38] Sabelis, M.W., Afman B.P., Synomone-induced suppression of take-off in the phytoseiid mite, Phytoseiulus persimilis Athias- Henriot, Exp. Appl. Acarol., 1994, 18, 711-721Search in Google Scholar

[39] Linquist E.E., Oldfield G.N., Evolution of eriophyoid mites in relation to their host plant. Pages 277-300 in Lindquist E.E., Sabelis, M.W., J. Bruin, J. (Eds), Eriophyoid mites: their biology, natural enemies and control, Elsevier, Amsterdam, 199610.1016/S1572-4379(96)80018-2Search in Google Scholar

[40] Sabelis M.W., Bruin J., Evolutionary ecology: life history patterns, food plant choice and dispersal. Pages 329-366 in Lindquist E.E., Sabelis M.W., Bruin J. (Eds), Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, 1996Search in Google Scholar

[41] Bergh J.C., Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in Central Florida, Environ. Entomol., 2001,30, 318-32610.1603/0046-225X-30.2.318Search in Google Scholar

[42] Nault L.R., Styer W.E., The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio, Ann. Entomol. Soc. Am., 1969, 62, 1446-145510.1093/aesa/62.6.1446Search in Google Scholar

[43] Evans G.O., Principles of acarology, CAB International, Wallingford, UK, 1992Search in Google Scholar

[44] Greathead D.J., Crawler behaviour and dispersal. Pages 339-342 in Ben-Dov Y., Hodgson C.J. (Eds), Soft scale insects: their biology, natural enemies and control, Elsevier Science, Amsterdam, 199710.1016/S1572-4379(97)80063-2Search in Google Scholar

[45] Glick P.A., The distribution of insects, spiders and mites in the air, Technical Bulletin no. 673, United States Department of Agriculture, Washington D.C., 1939Search in Google Scholar

[46] Freeman J.A., Occurrence of Collembola in the air, Proc. R. Entomol. Soc. Lond. A, 1952, 27, 2810.1111/j.1365-3032.1952.tb00142.xSearch in Google Scholar

[47] Farrow R.A., Greenslade P., A vertical migration of Collembola, Entomologist, 1992, 111, 38-45Search in Google Scholar

[48] Blackith R.E., Disney R.H.L., Passive dispersal during moulting in tropical Collembola, Malayan Nat. J., 1988, 41, 529-531Search in Google Scholar

[49] Van der Wurff A.W.G., Isaaks J.A., Ernsting G., Van Straalen N.M., Population substructures in the soil invertebrate Orchesella cincta, as revealed by microsatellite and TE-AFLP markers, Mol. Ecol., 2003,12, 1349-135910.1046/j.1365-294X.2003.01811.xSearch in Google Scholar

[50] Timmermans M.J.T.N., Ellers J., Mariën J., Verhoef S.C., Ferwerda E.B., Van Straalen N.M., Genetic structure in Orchesella cincta (Collembola): strong subdivision of European populations inferred from mtDNA and AFLP markers, Mol. Ecol., 2005, 14, 2017-202410.1111/j.1365-294X.2005.02548.xSearch in Google Scholar PubMed

[51] Hawes T.C., Worland M.R., Convey P., Bale J.S., Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography, Antarct. Sci., 2007, 19, 3-1010.1017/S0954102007000028Search in Google Scholar

[52] Reynolds A.M., Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed, Phytopathology, 2012, 102, 1026-103310.1094/PHYTO-01-12-0002Search in Google Scholar PubMed

[53] Stephens G.R., Aylor, D.E., Aerial dispersal of red pine scale, Matsucoccus resinosae (Homoptera: Margarodidae), Environ. Entomol., 1978, 7, 556-56310.1093/ee/7.4.556Search in Google Scholar

[54] Reynolds A.M., Beating the odds in the aerial lottery: passive dispersers select conditions at take-off that maximise their expected fitness on landing, Amer. Nat. 2013, 181, 555-56110.1086/669677Search in Google Scholar PubMed

[55] Reynolds A.M., Exponential and power-law contact distributions represent different atmospheric conditions, Phytopathology, 2011, 101, 1465-147010.1094/PHYTO-01-11-0001Search in Google Scholar PubMed

[56] Radicchi F., Baronchelli A., Amaral L.A.N., Rationality, irrationality and escalating behaviour in lowest unique bid auctions, PLoS One, 2012, 7, article e2991010.1371/journal.pone.0029910Search in Google Scholar PubMed PubMed Central

[57] Viswanathan G.M., Luz, M.G.E., Raposo, E.P., Stanley, H.E., The physics of foraging: an introduction to random searches and biological encounters, Cambridge University Press, Cambridge, UK, 201110.1017/CBO9780511902680Search in Google Scholar

[58] Wainhouse D., Dispersal of first instar larvae of the Felted Beech Scale, Cryptococcus fagisuga, J. Appl. Ecol., 1980, 17, 523-53210.2307/2402634Search in Google Scholar

[59] Uvarov B.P., Grasshoppers and locusts: a handbook of general acridology, vol. 2, Centre for Overseas Pest Research, London, 1977Search in Google Scholar

[60] Lorch P.D., Sword G.A., Gwynne D.T., Anderson G.L., Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations, Ecol. Entomol., 2005, 30, 548-55510.1111/j.0307-6946.2005.00725.xSearch in Google Scholar

[61] Kennedy, J.S., Phase transformation in locust biology, Biol. Rev., 1956, 31, 349-37010.1111/j.1469-185X.1956.tb01595.xSearch in Google Scholar

[62] Kennedy J.S., Insect dispersal. Pages 103-119 in D. Pimental (Ed.) Insects, Science and Society. Academic Press, New York, 197510.1016/B978-0-12-556550-9.50015-7Search in Google Scholar

[63] Simpson S.J., McCaffery A.R., Hägele, B.F., A behavioural analysis of phase change in the desert locust, Biol. Rev. 74, 1999, 461-480 10.1017/S000632319900540XSearch in Google Scholar

[64] Anstey M.L., Rogers S.M., Ott S.R., Burrows M., Simpson S.J., Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts, Science, 2009, 323, 627-63010.1126/science.1165939Search in Google Scholar PubMed

[65] Buhl J., Sumpter D.J.T., Couzin D., Hale J.J., Despland E., Miller E.R., et al., From disorder to order in marching locusts, Science, 2006, 312, 1402-140610.1126/science.1125142Search in Google Scholar

[66] Buhl J., Sword G.A., Clissold F., Simpson S.J., Group structure in locust migratory bands, Behav. Ecol. Sociobiol., 2011, 65, 265-27310.1007/s00265-010-1041-xSearch in Google Scholar

[67] Schneirla T.C., The army-ant behavior pattern: nomad-statary relations in the swarmers and the problem of migration, Biol. Bull., 1945, 88, 1945, 166-19310.2307/1538043Search in Google Scholar

[68] Franks N.R., Fletcher C.R., Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Colorado Island, Panama, Behav. Ecol. Sociobiol., 1983, 12, 261-27010.1007/BF00302894Search in Google Scholar

[69] Harrington R., Taylor L.R., Migration for survival: fine-scale population redistribution in an aphid, Myzus persicae, J. Anim. Ecol., 1990, 59, 1177-119310.2307/5039Search in Google Scholar

[70] Janowski-Bell M.E, Horner N.V., Movement of the male brown tarantula Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. J. Arachnol., 1999, 27, 503-512Search in Google Scholar

[71] Hopkin S.P., Read H.J., The biology of millipedes, Oxford University Press Oxford, UK, 1992Search in Google Scholar

[72] Hopkin S.P., Biology of the springtails (Insecta: Collembola), Oxford University Press, Oxford, UK, 1997Search in Google Scholar

[73] Hagvar S., A review of Fennoscandian arthropods living on and in snow, Eur. J. Entomol., 2010, 107, 281-29810.14411/eje.2010.037Search in Google Scholar

[74] Hagvar S., Fjellberg A., Autumn migration of a colony of Hypogastrura socialis (Uzel) (Collembola, Hypogastruridae), Norw. J. Entomol., 2002, 49, 145-146Search in Google Scholar

[75] Hagvar S., Long distance, directional migration on snow in a forest collembolan, Hypogastrura socialis (Uzel), Acta Zool. Fenn., 1995, 196, 200-205Search in Google Scholar

[76] Hagvar S., Navigation and behaviour of four Collembola species migrating on the snow surface, Pedobiologia, 2000, 44, 221-23310.1078/S0031-4056(04)70042-6Search in Google Scholar

[77] Cloudsley-Thompson J.L., The significance of migration in Myriapods, Ann. Mag. Nat. Hist. Series 12, 1949, 2, 947-96210.1080/00222934908654037Search in Google Scholar

[78] Waters T.F., The drift of stream insects, Annu. Rev. Entomol., 1972, 17, 253-272.10.1146/annurev.en.17.010172.001345Search in Google Scholar

[79] Brittain J.E., Biology of mayflies, Annu. Rev. Entomol., 1982, 27, 119-147.10.1146/annurev.en.27.010182.001003Search in Google Scholar

[80] Speirs D.C., Gurney W.S.C., Population persistence in rivers and estuaries, Ecology, 2001, 82, 1219-123710.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2Search in Google Scholar

[81] Olsson, T., Söderström O., Springtime migration and growth of Parameletus chelifer (Ephemeroptera) in a temporary stream in northern Sweden, Oikos 1978, 31, 284-28910.2307/3543652Search in Google Scholar

[82] Hughes J.M., Schmidt D.J., MacLean A., Wheatley A., Population genetic structure in stream insects: what have we learned? Pages 268-288 in Lancaster J., Briers R.A. (Eds), Aquatic insects: challenges to populations, CABI, Wallingford, UK, 2008Search in Google Scholar

[83] Yasick A.L., Krebs R.A., Wolin J.A., The effect of dispersal ability in winter and summer stoneflies on their genetic differentiation, Ecol. Entomol., 2007, 32, 399-404.10.1111/j.1365-2311.2007.00881.xSearch in Google Scholar

[84] Davies B.R., The dispersal of Chironomidae larvae: a review, J. Entomol. Soc. S. Afr., 1976, 39, 39-62Search in Google Scholar

[85] Franke C., Detection of transversal migration of larvae of Chaoborus flavicans (Diptera, Chaoboridae) by the use of a sonar system, Arch. Hydrobiol., 1987, 109, 355-366 Search in Google Scholar

[86] Palmén E., Die anemohydrochore Austbreitung der Insekten als zoogeographischer Faktor, Ann. Zool. Soc. Zool. Bot. Fenn. Vanamo, 1944, 10, 1-262Search in Google Scholar

[87] Kennedy J.S., Fosbrooke I.H.M., The plant in the life of an aphid. Pages129-140 in van Emden, H.F. (Ed.), Insect/Plant Relationships (Symposia of the Royal Entomological Society of London, no. 6.) Blackwell Scientific Publications, Oxford, UK, 1973Search in Google Scholar

[88] Shashar N., Sabbah S., Aharoni, N., Migrating locusts can detect polarized reflections to avoid flying over the sea, Biol. Lett., 2005, 1, 472-47510.1098/rsbl.2005.0334Search in Google Scholar

[89] Hawes T.C., Worland M.R., Bale J.S., Convey P., Rafting in Antarctic Collembola, J. Zool., 2008, 274, 44-5010.1111/j.1469-7998.2007.00355.xSearch in Google Scholar

[90] Witteveen, J., Joosse E.N.G., The effects of inundation on marine littoral Collembola, Holarctic Ecol. 1988, 11, 1-710.1111/j.1600-0587.1988.tb00775.xSearch in Google Scholar

[91] Peck S.B., Sea-surface (plueston) transport of insects between islands in the Galápagos Archipelago, Ecuador, Ann. Entomol. Soc. Am., 1994, 87, 576-58210.1093/aesa/87.5.576Search in Google Scholar

[92] Coulson S.J., Hodkinson I.D., Webb N.R., Harrison J.A., Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal, Funct. Ecol., 2002, 16, 353-35610.1046/j.1365-2435.2002.00636.xSearch in Google Scholar

[93] Ólafsson E., The development of the land-arthropod fauna on Surtsey, Iceland, during 1971-1976, with notes on terrestrial Oligochaeta, Surtsey Research Progress Report 1978, 8, 41-46Search in Google Scholar

[94] Foster W.A., Dispersal behaviour of an intertidal aphid, J. Anim. Ecol., 1978, 47, 653-65910.2307/3807Search in Google Scholar

[95] Foster W.A., Treherne J.E., Dispersal mechanisms in an intertidal aphid, J. Anim. Ecol., 1978, 47, 205-21710.2307/3932Search in Google Scholar

[96] Marden J.H., Kramer M.G., Locomotor performance of insects with rudimentary wings, Nature, 1995, 377, 332-33410.1038/377332a0Search in Google Scholar

[97] Marden J.H., O’Donnell B.C., Thomas M.A., Bye J.Y., Surfaceskimming stoneflies and mayflies: the taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion, Physiol. Biochem. Zool., 2000, 73, 751-76410.1086/318109Search in Google Scholar PubMed

[98] Marden J.H., Evolution and physiology of flight in aquatic insects. Pages 230-249 in Lancaster J., Briers R.A. (Eds), Aquatic insects: challenges to populations, CABI, Wallingford, UK, 200810.1079/9781845933968.0230Search in Google Scholar

[99] Dudley R., Byrnes G.,Yanoviak S.P., Borrell B., Brown R.M., McGuire J., Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu. Rev. Ecol. Evol. Syst., 2007, 38, 179-20110.1146/annurev.ecolsys.37.091305.110014Search in Google Scholar

[100] Farish D.J., Axtell R.C., Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae), Acarologia, 1971, 13, 16-25Search in Google Scholar

[101] Athias-Binche F., Ecology and evolutionary ecology of phoresy in mites. Pages 27-41 in Dusbábek F., Bukva V. (Eds), Modern acarology, vol. 1, Academia, Prague, and SPB Academic Publishing, The Hague, 1991Search in Google Scholar

[102] Walter D., Proctor H., Mites: ecology, evolution and behaviour, CABI Publishing, Wallingford, UK, 1999Search in Google Scholar

[103] Krantz G.W., Habits and habitats. Pages 64-82 in Krantz G.W., Walter D.E. (Eds), A manual of acarology, 3rd edn, Texas Tech University Press, Lubbock, Texas, 2009Search in Google Scholar

[104] Houck M.A., OConnor B.M., Ecological and evolutionary significance of phoresy in the Astigmata (Acari), Annu. Rev. Entomol., 1991, 36, 611-63610.1146/annurev.en.36.010191.003143Search in Google Scholar

[105] Binns E.S., Phoresy as migration - some functional aspects of phoresy in mites, Biol. Rev., 1982, 57, 571-620 10.1111/j.1469-185X.1982.tb00374.xSearch in Google Scholar

[106] Camerik A.M., Phoresy revisited. Pages 333-336 in Sabelis M.W., Bruin, J. (Eds), Trends in acarology - Proceedings of the 12th International Congress, Springer, Dordrecht, The Netherlands, 200910.1007/978-90-481-9837-5_53Search in Google Scholar

[107] Gorb S.N., Attachment devices of insect cuticle, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001Search in Google Scholar

[108] Southwood T.R.E., Migration of terrestrial arthropods in relation to habitat, Biol. Rev., 1962, 37, 171-21410.1111/j.1469-185X.1962.tb01609.xSearch in Google Scholar

[109] Poinar G.O., Ćurčić B.P.M., Cokendolpher J.C., Arthropod phoresy involving pseudoscorpions in the past and present, Acta Arachnol., 1998, 47, 79-9610.2476/asjaa.47.79Search in Google Scholar

[110] Zeh D.W., Zeh J.A., Failed predation or transportation? Causes and consequences of phoretic behavior in the pseudoscorpion Dinocheirus arizonensis (Pseudoscorpionida: Chernetidae), J. Insect Behav. 1992, 5, 37-4910.1007/BF01049156Search in Google Scholar

[111] Weygoldt P., The biology of pseudoscorpions, Harvard University Press, Cambridge, Massachusetts, 1969Search in Google Scholar

[112] Zeh D.W., Zeh J.A., Emergence of a giant fly triggers phoretic dispersal in the neotropical pseudoscorpion, Semeiochernes armiger (Balzan) (Pseudoscorpionida: Chernetidae), Bull. Brit. Arachnol. Soc., 1992, 9, 43-46Search in Google Scholar

[113] Zeh D.W., Zeh J.A., On the function of harlequin beetle-riding in the pseudoscorpion, Cordylochernes scorpioides (Pseudoscorpionida: Chernetidae), J. Arachnol., 1992, 20, 47-51Search in Google Scholar

[114] Hunter P.E., Rosario R.M.T., Associations of Mesostigmata with other arthropods, Annu. Rev. Entomol., 1988, 33, 393-41710.1146/annurev.en.33.010188.002141Search in Google Scholar

[115] Athias-Binche F., La phorésie chez les acariens: aspects adaptatifs et évolutifs. Editions du Castillet, Perpignan, France, 1994Search in Google Scholar

[116] Perotti M.A., Braig H.R., Phoretic mites associated with animal and human decomposition, Exp. Appl. Acarol., 2009, 49, 85-12410.1007/s10493-009-9280-0Search in Google Scholar PubMed

[117] Elzinga R.J., Broce A.B., Hypopi (Acari: Histiostomatidae) on house flies (Diptera: Muscidae): a case of detrimental phoresy, J. Kansas Entomol. Soc. 61, 1988, 208-213Search in Google Scholar

[118] Houck M.A., Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure, Exp. Appl. Acarol., 1999, 23, 97-11810.1007/978-94-017-1343-6_21Search in Google Scholar

[119] Elzinga R.J., Rettenmeyer C.W., Berghoff S.M., Army ant mites: the most specialized mites found on any social insect. Poster presented at Congress XV of the International Union for the Study of Social Insects, July 30 - August 5, 2006, Washington DC., http://www.armyantbiology.com/IUSSI_Mite_Poster.pdfSearch in Google Scholar

[120] OConnor B.M., Klompen, J.S.H., Phylogenetic perspectives on mite-insect associations: the evolution of acarinaria. Pages 63-71 in Needham G.R., Mitchell R., Horn D.J., Welbourn, W.C. (Eds), Acarology IX, vol. 2, Symposia. Ohio Biological Survey, Columbus, Ohio, 1999Search in Google Scholar

[121] Okabe, K., Makino, S., Behavioural observations of the bodyguard mite Ensliniella parasitica. Pages 193-199 in Moraes G.J. de, Proctor H. (Eds), Acarology XIII: Proceedings of the International Congress, Zoosymposia 6, 201110.11646/zoosymposia.6.1.29Search in Google Scholar

[122] Houck M.A., Cohen A.C., The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite, Exp. Appl. Acarol., 1995, 19, 677-69410.1007/BF00052079Search in Google Scholar

[123] Knülle W., Interaction between genetic and inductive factors controlling the expression of dispersal and dormancy morphs in dimorphic astigmatic mites, Evolution, 2003, 57, 828-83810.1111/j.0014-3820.2003.tb00294.xSearch in Google Scholar PubMed

[124] Hall C.C., A dispersal mechanism in mites (Acarina: Anoetidae), J. Kansas Entomol. Soc., 1959, 32, 45-46Search in Google Scholar

[125] Krantz G.W., Dissemination of Kampimodromus aberrans by the filbert aphid, J. Econ. Entomol., 1973, 66, 575-576.10.1093/jee/66.2.575Search in Google Scholar

[126] Schwarz H.H., Koulianos S., When to leave the brood chamber? Routes of dispersal in mites associated with burying beetles, Exp. Appl. Acarol., 1998, 22, 621-63110.1007/978-94-017-1343-6_22Search in Google Scholar

[127] Niogret J., Lumaret J.P., Bertrand M., Semiochemicals mediating host-finding behaviour in the phoretic association between Macrocheles saceri (Acari: Mesostigmata) and Scarabaeus species (Coleoptera: Scarabaeidae), Chemoecology, 2006, 16, 129-13410.1007/s00049-006-0338-8Search in Google Scholar

[128] Soroker V., Nelson D.R., Bahar O., Reneh S., Yablonski S., Palevsky E ., Whitefly wax as a cue for phoresy in the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae), Chemoecology, 2003, 13, 163-16810.1007/s00049-003-0243-3Search in Google Scholar

[129] Colwell R.K., Stowaways on the hummingbird express, Nat. Hist. 1985, 94(7), 56-63Search in Google Scholar

[130] Boggs C.L., Gilbert L.E., Spatial and temporal distribution of Lantana mites phoretic on Lepidoptera, Biotropica, 1987,19, 301-30510.2307/2388626Search in Google Scholar

[131] Tschapka M., Cunningham S.A., Flower mites of Calyptrogyne ghiesbreghtiana (Araceae): evidence for dispersal using pollinating bats. Biotropica 2004, 36, 377-38110.1111/j.1744-7429.2004.tb00330.xSearch in Google Scholar

[132] Heyneman A.J., Colwell R.K., Naeem S., Dobkin D.S., Hallet B., Host plant discrimination: experiments with hummingbird flower mites. Pages 455-485 in Price P.W., Lewinsohn T.M., Fernandes G.W., Benson W.W (Eds), Plant-animal interactions: Evolutionary ecology in tropical and temperate regions, John Wiley and Sons, New York, 1991Search in Google Scholar

[133] Clausen, C.P., Phoresy among entomophagous insects, Annu. Rev. Entomol., 1976, 21, 343-36810.1146/annurev.en.21.010176.002015Search in Google Scholar

[134] Farrow R.A., Aerial dispersal of Scelio fulgidus [Hym.: Scelionidae], parasite of eggs of locusts and grasshoppers [Ort.: Acrididae], Entomophaga, 1981, 26, 349-355Search in Google Scholar

[135] Green A.J., Sánchez M.I., Passive internal dispersal of insect larvae by migratory birds, Biol. Lett. 2006, 2, 55-5710.1098/rsbl.2005.0413Search in Google Scholar PubMed PubMed Central

[136] Guix J.C., Ruiz X., Weevil larvae dispersal by guans in southeastern Brazil, Biotropica, 1997, 29, 522-52510.1111/j.1744-7429.1997.tb00047.xSearch in Google Scholar

[137] Magsig-Castillo J., Morse J.G., Walker G.P., Bi J.L, Rugman-Jones P.F., Stouthamer, R., Phoretic dispersal of armored scale crawlers (Hemiptera: Diaspididae), J. Econ. Entomol., 2010, 103, 1172-117910.1603/EC10030Search in Google Scholar

[138] Gullan, P.J., Cockburn A., Sexual dichronism and intersexual phoresy in gall-forming coccoids, Oecologia, 1986, 68, 632-63410.1007/BF00378784Search in Google Scholar PubMed

[139] Dingle H., Animal migration: Is there a common migratory syndrome? J. Ornith., 2006,147, 212-22010.1007/s10336-005-0052-2Search in Google Scholar

[140] Drake V.A., Gatehouse A.G., Farrow, R.A., Insect migration: a holistic conceptual model. Pages 427-457 in Drake V.A., Gatehouse A.G. (Eds), Insect migration: tracking resources through space and time, Cambridge University Press, Cambridge, UK, 1995 10.1017/CBO9780511470875Search in Google Scholar

Received: 2013-11-18
Accepted: 2013-12-16
Published Online: 2014-04-24
Published in Print: 2015-01-01

© 2014 Don R. Reynolds et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/ami-2014-0002/html
Scroll to top button