Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T03:39:15.970Z Has data issue: false hasContentIssue false

Radiocarbon Age-Depth Modeling Prevents Misinterpretation of Past Vegetation Dynamics: Case Study of Wierchomla Mire (Polish Outer Carpathians)

Published online by Cambridge University Press:  09 February 2016

Adam Michczyński*
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Centre for Science and Education, Silesian University of Technology, Krzywoustego Str. 2, 44-100 Gliwice, Poland
Piotr Kołaczek
Affiliation:
Department of Biogeography and Palaeoecology, Faculty of Geographical and Geological Science, Adam Mickiewicz University, ul. Dzięgielowa 27, 61-680 Poznań, Poland
Włodzimierz Margielewski
Affiliation:
Institute of Nature Conservation, Polish Academy of Sciences, Al. A. Mickiewicza 33, 31-120 Kraków, Poland
Danuta J Michczyńska
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Centre for Science and Education, Silesian University of Technology, Krzywoustego Str. 2, 44-100 Gliwice, Poland
Andrzej Obidowicz
Affiliation:
Institute of Botany, Polish Academy of Sciences, Lubicz str. 46, 31-120 Kraków, Poland
*
2Corresponding author. Email: Adam.Michczynski@polsl.pl.

Abstract

An age-depth model based on radiocarbon dates was produced from a Holocene profile collected from a rich fen situated in the Beskid Sądecki Mountains (the Outer Western Carpathians, southern Poland). The model is compared against the results of palynological and loss on ignition (LOI) analyses supplemented by the identification of organic deposits. Five distinct palynological episodes are detected. These potential palynological age markers are critically compared with the results of age-depth modeling and other dated profiles. The results presented distinctly show that using palynological episodes as age markers for age-depth construction may be highly misleading.

Type
Paleoclimatology and Paleohydrology
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, KD, Fuller, JL. 2002. Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America. The Holocene 12:421–9.Google Scholar
Berglund, BE, Ralska-Jasiewiczowa, M. 1986. Pollen analysis. In: Berglund, BE, editor. Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester: John Wiley & Sons. p 455–84.Google Scholar
Beug, HJ. 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Blaauw, M. 2012. Out of tune: the dangers of aligning proxy archives. Quaternary Science Reviews 36:3849.Google Scholar
Blaauw, M, Mauquoy, D. 2012. Signal and variability within a Holocene peat bog—chronological uncertainties of pollen, macrofossil and fungal proxies. Review of Palaeobotany and Palynology 186:515.CrossRefGoogle Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2): 4260.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Buczkó, K, Magyari, EK, Bitušík, P, Wacnik, A. 2009. Review of dated Late Quaternary palaeolimnological records in the Carpathian Region, east-central Europe. Hydrobiologia 631(1):328.CrossRefGoogle Scholar
Csontos, P, Vitalos, M, Barina, Z, Kiss, L. 2010. Early distribution and spread of Ambrosia artemisiifolia in Central and Eastern Europe. Botanica Helvetica 120: 75–8.CrossRefGoogle Scholar
Dudová, L, Hájková, P, Buchtová, H, Opravilová, V. 2013. Formation, succession and landscape history of Central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mts. The Holocene 23(2): 230–42.Google Scholar
Farkaş, S, Tantua, I, Mîndrescu, M, Hurdu, B. 2013. Holocene vegetation history in the Maramureş Mountains (Northern Romanian Carpathians). Quaternary International 293:92104.Google Scholar
Feurdean, A, Mosbrugger, V, Onac, BP, Polyak, V, Veres, D. 2007a. Younger Dryas to mid-Holocene environmental history of the lowlands of NW Transylvania, Romania. Quaternary Research 68:364–78.Google Scholar
Feurdean, A, Wohlfarth, B, Björkman, L, Tanţuă, I, Bennike, O, Willis, A, Farcas, S, Robertsson, AM. 2007b. The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Review of Palaeobotany and Palynology 145:305–20.Google Scholar
Feurdean, A, Klotz, S, Brewer, S, Mosbrugger, V, Tăma, T, Wohlfarth, B. 2008. Lateglacial climate development in NW Romania—Comparative results from three quantitative pollen-based methods. Palaeogeography, Palaeoclimatology, Palaeoecology 265:121–33.CrossRefGoogle Scholar
Grodzińska, K, Szarek-łukaszewska, G. 1998. State of Polish Mountain Forests: Past, Present, and Future. USDA Forest Service Gen. Tech. Rep. PSW-GTR-166:2734.Google Scholar
Hájková, P, Grootjans, A, Lamentowicz, M, Rybníčková, E, Madaras, M, Opravilová, V, Michaelis, D, Hájek, M, Joosten, H, Wołejko, L. 2012. How a Sphagnum fuscum-dominated bog changed into a calcareous fen: the unique Holocene history of a Slovak spring-fed mire. Journal of Quaternary Science 27(3):233–43.CrossRefGoogle Scholar
Huntley, B, Birks, HJB. 1983. An Atlas of Past and Present Pollen Maps for Europe 0–13,000 Years Ago. Cambridge: Cambridge University Press.Google Scholar
Heiri, O, Lotter, AF, Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25:101–10.Google Scholar
Jacobson, GL Jr, Bradshaw, RH. 1981. The selection of sites for palaeovegetational studies. Quaternary Research 16:8096.Google Scholar
Kłapyta, P, Kołaczek, P. 2010. Multi-proxy analyses of Subatlantic peat bog sediments from the Western Tatra Mts. (Poland). Scientific Annals, School of Geology, Aristotle University of Thessaloniki, Proceedings of the XIX CBGA Congress, Thesaloniki, Greece, Special Volume 99:503–11.Google Scholar
Kołaczek, P. 2010. The development of Late Glacial and Holocene vegetation and human impact near Grodzisko Nowe in the Lower San Valley (Sandomierz Basin, Poland SE). Acta Palaeobotanica 50(2):101–17.Google Scholar
Kołaczek, P, Fiałkiewicz-Kozieł, B, Karpiska-Kołaczek, M, Gałka, M. 2010. The last two millennia of vegetation development and human activity in the Orawa-Nowy Targ Basin (south-eastern Poland). Acta Palaeobotanica 50(2):133–48.Google Scholar
Kołaczek, P, Zubek, S, Błaszkowski, J, Mleczko, P, Margielewski, W. 2013. Erosion or plant succession—How to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Review of Palaeobotany and Palynology 189:2937.CrossRefGoogle Scholar
Liu, Y, Brewer, S, Jackson, ST, Minckley, TA, Booth, RK. 2012. Temporal density of pollen sampling affects age determination of the mid-Holocene hemlock (Tsuga) decline. Quaternary Science Reviews 45:54–9.Google Scholar
Makra, L, Juhász, M, Béczi, R, Borsos, E. 2005. The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:5764.Google Scholar
Mangerud, J, Andersen, ST, Berglund, BE, Donner, J. 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3(3):109–26.Google Scholar
Margielewski, W. 1997. Dated landslides of the Jaworzyna Krynicka Range (Outer Carpathians) and their relation to climatic phases of the Holocene. Annales Societatis Geologorum Poloniae 67:8392.Google Scholar
Margielewski, W. 2006. Records of the Late Glacial-Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. Area (Polish Outer Carpathians). Folia Quaternaria 76:1149.Google Scholar
Margielewski, W, Krąpiec, M, Valde-Nowak, P, Zernitskaya, V. 2010a. A Neolithic yew bow in the Polish Carpathians. Evidence of the impact of human activity on mountainous palaeoenvironment from the Kamiennik landslide peat bog. Catena 80(1):141–53.Google Scholar
Margielewski, W, Michczyński, A, Obidowicz, A. 2010b. Records of the middle and late Holocene palaeoenvironmental changes in the Pcim-Sucha landslide peat bogs (Beskid Makowski Mts., Polish Outer Carpathians). Geochronometria 35:1123.Google Scholar
Margielewski, W, Kołaczek, P, Michczyński, A, Obidowicz, A, Pazdur, A. 2011. Record of the Meso- and Neo-holocene palaeoenvironmental changes in the Jesionowa landslide peat bog (Beskid Sądecki Mts., Polish Outer Carpathians). Geochronometria 38(2):138–54.Google Scholar
Michczyński, A. 2011. Tworzenie chronologii bezw-zglęnych na podstawie datowania metodą radiowęglową [Absolute chronologies constructed on the basis of radiocarbon dating]. Wydawnictwo Politechniki Ṡląskiej. In Polish.Google Scholar
Moore, PD, Weeb, JA, Collinson, ME. 1991. Pollen Analysis. Oxford: Blackwell Scientific.Google Scholar
Nalepka, D, Walanus, A. 2003. Data processing in pollen analysis. Acta Palaeobotanica 43(1):125–34.Google Scholar
Obidowicz, A. 2003. The Holocene development of forest in the Pilsko Mt. area (Beskid Żywiecki Range, South Poland). Folia Quaternaria 74:715.Google Scholar
Punt, W, Hoen, PP. 2009. The Northwest European Pollen Flora, 70, Asteraceaee Asteroideae. Review of Palaeobotany and Palynology 157:22183.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51(4): 1111–50.Google Scholar
Smith, AG, Pilcher, JR. 1973. Radiocarbon dates and vegetational history of the British Isles. New Phytologist 72:903–14.Google Scholar
Szczepanek, K. 2001. Late Holocene vegetation history in the Dukla Pass (Low Beskidy, Carpathians) based on pollen and macrofossil analyses. Acta Palaeobotanica 21(2):341–53.Google Scholar
Tanţuă, I, Feurdean, A, de Beaulieu, JL, Reille, M, Fărkaş, S. 2011. Holocene vegetation history in the upper forest belt of the Eastern Romanian Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 309: 281–90.Google Scholar
Tobolski, K, Nalepka, D. 2004. Fraxinus excelsior L. - ash. In: Ralska-Jasiewiczowa, M, Latałowa, M, Wasylikowa, K, Tobolski, K, Madeyska, E, Wright, HE Jr, Turner, C, editors. Late Glacial and Holocene History of Vegetation in Poland based on Isopollen Maps. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences. p 105–10.Google Scholar
Walanus, A, Nalepka, D. 2010. Calibration of Mangerud's boundaries. Radiocarbon 52(4):1639–44.Google Scholar