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Summary. The genus Photobacterium, one of the eight genera included in the family Vibrionaceae, contains 27 species 
with valid names and it has received attention because of the bioluminescence and pathogenesis mechanisms that some of 
its species exhibit. However, the taxonomy and phylogeny of this genus are not completely elucidated; for example, P. logei 
and P. fischeri are now considered members of the genus Aliivibrio, and previously were included in the genus Vibrio. In 
addition, P. damselae subsp. piscicida was formed as a new combination for former Vibrio damsela and Pasteurella piscicida. 
Moreover, P. damselae subsp. damselae is an earlier heterotypic synonym of P. histaminum. To avoid these incovenences 
draft and complete genomic sequences of members of Photobacterium are increasingly becoming available and their use is 
now routine for many research laboratories to address diverse goals: species delineation with overall genomic indexes, 
phylogenetic analyses, comparative genomics, and phenotypic inference. The habitats and isolation source of the Photobac-
terium species include seawater, sea sediments, saline lake waters, and a variety of marine organisms with which the photo-
bacteria establish different relationships, from symbiosis to pathogenic interactions. Several species of this genus contain 
bioluminescent strains in symbiosis with marine fish and cephalopods; in addition, other species enhance its growth at 
pressures above 1 atmosphere, by means of several high-pressure adaptation mechanisms and for this, they may be considered 
as piezophilic (former barophilic) bacteria. Until now, only P. jeanii, P. rosenbergii, P. sanctipauli, and the two subspecies 
of P. damselae have been reported as responsible agents of several pathologies on animal hosts, such as corals, sponges, fish 
and homeothermic animals. In this review we have revised and updated the taxonomy, ecology and pathogenicity of several 
members of this genus. [Int Microbiol 20(1): 1-10 (2017)]
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Taxonomic and phylogenetic perspec-
tives

The genus Photobacterium has a long standing in micro
biology, having received attention for more than one century 

by the bioluminescence that some of its species exhibit. In-
deed, etymologically it means light producing bacterium. To 
date, it contains 27 species with valid names (Table 1). The 
historical development of the taxonomy of this genus is rela-
tively easy to follow. The type species, Photobacterium 
phosphoreum, was included in the Approved Lists of Bacte-
rial Names [79] together with P. angustum, P. (Aliivibrio) 
fischeri and P. leiognathi. The only species described in the 
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following decade, P. logei, is now considered a member of 
the genus Aliivibrio and so is P. fischeri [64]. In turn, P. dam-
selae [80] was formed as a new combination for former Vib-
rio damsela and Pasteurella piscicida. This species is the 
only one for which subspecies have been proposed so far 
with the publication of P. damselae subsp. piscicida [27]. 
Moreover, P. damselae subsp. damselae is an earlier hetero-
typic synonym of P. histaminum [37,60]. In the last two de-
cades the pace of descriptions has intensified with the pro-
posal of 20 novel species and two new combinations with 
valid names (Table 1), which gives an average of about two 
new species names per year. According to minute 17 of the 
Subcommittee meetings on the taxonomy of Aeromonada-
ceae, Vibrionaceae and related organisms held in Istanbul, 
Turkey, in 2008 [31], the type strain of P. aplysiae is not 
available and a neotype strain has not been proposed to date.

At the time of validation [79], the description of the genus 
was the one given in the 8th edition of Bergey’s Manual. Al-
though an emendation has never been formally proposed it 
has been revised and updated recently [84].

Phylogeny. Photobacterium is one of the nine genera con-
tained in the family Vibrionaceae (order “Vibrionales”, class 
Gammaproteobacteria). It is also the largest one after the type 
genus Vibrio. Following a practice that is common and more 
developed for Vibrio spp. [64,73], several authors have estab-
lished different clades within the genus Photobacterium 
[6,73,86]. Clades are usually named after the older species 
name, referring to its validation date, regardless of the posi-
tion of that strain into the clade. Currently, four clades have 
been described in the genus Photobacterium: Damselae (P. 
damselae subsp. damselae and P. damselae subsp. piscicida), 
Phosphoreum (P. angustum, P. aquimaris, P. iliopiscarium, 
P. kishitanii, P. leiognathi, P. phosphoreum and P. piscicola), 
Profundum (P. aestuarii, P. aplysiae, P. frigidiphilum, P. in-
dicum, P. lipolyticum, P. profundum, P. sanguinicancri and P. 
swingsii), and Rosenbergii (P. aphoticum, P. ganghwense, P. 
halotolerans, P. jeanii, P. lutimaris, P. marinum, P. rosenber-
gii). But the clustering of P. aquae, P. gaetbulicola, P. gal-
atheae, P. panuliri, and P. sanctipauli has not been elucidated 
yet. It has to be noted that this classification into clades has no 
standard in nomenclature although it can make more amena-
ble the study of large genera by grouping together lines of 
descents. However, this achievement requires the application 
of robust molecular approaches and large sets of strains (not 

just type strains). A comprehensive study meeting both requi-
sites is still pending to the best of our knowledge but at least 
it is optimistic to see that most recent species descriptions in-
clude phylogenetic analysis using alternative genes 
[48,56,71,83] or MLSA schemes [7,10,26,29,45,50,92]. This 
means that at least for some genes there are sequences avail-
able in public repositories for most (ideally all) the type 
strains and even for a number of additional isolates of some of 
them.

The genes more frequently employed to perform phyloge-
netic studies within the genus Photobacterium are recA (pro-
tein RecA, recombinase A), rpoA (RNA polymerase α sub-
unit), gyrB (DNA gyrase subunit B), pyrH (uridylate kinase, 
uridine monophosphate kinase), gapA (glyceraldehyde 
3-phosphate dehydrogenase, NAD-dependent glyceralde-
hyde-3-phosphate dehydrogenase), ftsZ (cell division protein 
FstZ), topA (DNA topoisomerase I), and mreB (rod shape-
determining protein MreB).

At the same time, draft and complete genomic sequences 
of members of the genus Photobacterium are increasingly be-
coming available and their use is becoming routine for many 
research laboratories to address diverse goals: species delin-
eation with overall genomic indexes, phylogenetic analyses, 
comparative genomics, and phenotypic inference [2,29,50]. 
At the time of writing the present review (1 March, 2017), a 
search at the Assemblies database in NCBI [http://www.ncbi.
nlm.nih.gov/] shows that there are 67 results for Photobacte-
rium, 15 of which are from strains flagged as type material. A 
more careful examination reveals that two of these can be 
considered redundant entries (they are from two equivalent 
designations of the same strain, the type strain of P. damselae, 
sequenced in different laboratories) and another one is from 
“P. marinum” that has not been validated to date. Since there 
are 27 species in the genus, the resulting 13 genomic sequenc-
es represent about half of them. Thus the gap to be filled to 
give full coverage to the type strains of the genus in terms of 
availability of their genomic sequences is not too large and we 
can anticipate it might be reached soon. Although most of 
these genomic sequences are assembled into contigs or scaf-
folds, there are two completed, P. gaetbulicola Gung47T and 
P. profundum SS9.

One advantage of having large data sets of genomes is that 
they can be explored to search for the most suitable single 
gene phylogenetic marker. This objective has been addressed 
at the family level by Machado and Gram [49] who concluded 
that the fur (ferric uptake regulator Fur) gene was suitable for 
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that purpose and even developed a PCR method to be used for 
the amplification and sequencing of the gene. Phylogenetic 
analysis can also be a method to elucidate horizontal gene 
transfer as it was performed in the study by Urbanczyk et al. 
[85], who assessed the incidence of interspecies transfer of 
the lux genes (luxCDABEG), which encode proteins involved 
in luminescence and concluded that horizontal transfer of the 
lux genes in nature is rare and that horizontal acquisition of 
the lux genes apparently has not contributed to speciation in 
recipient taxa.

 

Ecology of Photobacterium

The members of the genus Photobacterium thrive worldwide 
in oceans and show substantial ecophysiological diversity in-
cluding free-living, symbiotic, piezophilic, and parasitic life 
styles. The habitats and isolation source of these species in-
clude seawater, sea sediments, saline lake waters, and a vari-
ety of marine organisms with which the photobacteria estab-
lish different relationships, from symbiotic ones, such as 
commensalism or mutualism, to pathogenic interactions. 

Table 1. Species, habitats and geographic sources of Photobacterium species

Species Habitats Geographic sources Reference

P. aestuarii  Tidal flat sediment Yeongam Bay (R. Korea) [46]

P. angustum Seawater North Pacific Ocean (20º30’N 157º30’E) [79]

P. aphoticum Seawater Malvarrosa beach, Valencia (Spain) [48]

P. aplysiae Eggs of sea hare (Aplysia kurodai) Mogiyeo (R. Korea) [75]

P. aquae Malabar grouper (Epinephelus malabaricus) in mariculture system Tianjin (China) [45]

P. aquimaris Seawater Sagami Bay (Japan) [92]

P. damselae Damselfish (Chromis punctipinnis) skin ulcera California (USA) [47,80]

P. frigidiphilum Deep-sea sediments (1450 m) Edison Seamount (western Pacific Ocean) [74]

P. gaetbulicola Tidal flat Gungharbour (R. Korea) [36]

P. galatheae Mussel Solomon Sea (Solomon Islands) [50]

P. ganghwense Seawater Ganghwa Island (R. Korea) [63]

P. halotolerans Water from a subterranean saline lake Lake Martel, Mallorca (Spain) [71]

P. iliopiscarium Intestines of fish (herring, coal fish, cod and salmon) living in cold 
seawater

Norway [84]

P. indicum Marine mud (400 m depth) Indian Ocean [32]

P. jeanii Healthy corals (Palythoa caribaeorum, Phyllogorgia dilatata and 
Merulina ampliata)

Brazil and Australia [10]

P. kishitanii Light organs and skin of several marine fish species Japan, Cape Verde, Hawaii, Florida, South 
Africa

[7]

P. leiognathi Light organ of teleostean fish (Leiognathus) Gulf of Thailand (Thailand) [66]

P. lipolyticum Intertidal sediment Yellow Sea (R. Korea) [91]

P. lutimaris Tidal flat sediment Saemankum (R. Korea) [33]

P. panuliri Eggs of spiny lobster (Panulirus penicillatus) Andaman Sea (India) [13]

P. phosphoreum Skin of marine animals, intestines of marine fish, luminous organs, 
seawater

Hawaii (USA), Japan and other locations [79]

P. piscicola Skin and intestine of marine fish, spoiled packed cod North Sea (Holland), Denmark, Aberdeen 
Bay (UK)

[26]

P. profundum Deep-sea sediment (5110 m) RyukyuTrench (24º15.23’N 126º47.30’E) [58]

P. rosenbergii Tissue and water extracts of coral species Magnetic Island (Australia) [83]

P. sanctipauli Coral (Madracis decactis) St. Peter & St. Paul Archipelago (Brazil) [56]

P. sanguinicancri Crab (Maja brachydactyla) haemolymph, mussels (Mytilus edulis) Spain, Netherlands [29]

P. swingsii Pacific oysters (Crassostrea gigas), crab (Maja brachydactyla) 
haemolymph

Mexico, Spain [28]

Additional strains are reported in Smith et al. [80] from human puncture wound, diseased shark, diseased turtle, diseased fish, aquarium seawater 
and fish surface.
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Generally, in the marine environment (seawater and sedi-
ment), the species of Photobacterium are free-life forms, but 
they may colonize several animal surfaces developing neutral 
or negative relationships with the host. These nonspecific or 
pathogenic associations contrast with the highly specific, mu-
tually beneficial association of certain Photobacterium spe-
cies in bioluminescent symbiosis with aquatic animals [17].

There is not a clear discrimination between the Photobac-
terium species regarding to their relationship with the isola-
tion source or habitat (Table 1). Thus, most of the nonlumi-
nous photobacteria (lack of lux operon genes) have been 
isolated from marine waters or sediments, but several strains 
of these species have been described in association with dis-
eased or healthy corals, zoanthids, sea hares, mollusks, crabs 
and fish [28,29,39,45,69,75,83]. Nevertheless, strains of lu-
minous Photobacterium species harbouring genes for lumi-
nescence (lux CDABEG) [19], such as P. kishitanii, P. leiog-
nathi, P. phosphoreum and P. piscicola, have also been 
isolated from squids, corals and fish [6,26,34]. Therefore, the 
luminescence production property is not a key ability of this 
bacterial group to the specific colonization of none habitats, 
excepting the light-organs of squids and fish.

Photobacteria as symbiotic of light-organs. 
Several species of this genus contain bioluminescent strains 
including P. angustum, P. aquimaris, P. damselae, P. ganghw-
ense, P. kishitanii, P. leiognathi, P. phosphoreum, and P. pisci-
cola. From them, P. kishitanii and P. leiognathi establish bio-
luminescent symbiosis with marine fish, squid and octopus 
[57]. These associations are typically highly specific at the 
animal family-bacterial species level; P. leiognathi with fam-
ilies Leiognathidae, Acropomatidae and Apogonidae (Perci-
formes), and Moridae (Gadiformes) [21,34,82,88]; and P. 
kishitanii with the fish families Chloropthslmidae (Acilopi-
formes), Macrouridae, Sleindachneriidae and Moridae (Gad-
iformes), Trachichthyidae (Beryciformes), Opisthoprectidae 
(Gemeriformes) and Acropomatidae (Perciformes) [6,20]. 
The animals accumulate dense populations of luminous bac-
teria in gland-like tissue complex called light organs [24], 
providing them with nutrients and oxygen for their growth 
and light production. The bacterial light in symbiotic animals 
is associated with sex-specific signalling, predator avoidance, 
locating or attracting prey, to name a few [82,86]. Symbiotic 
luminous bacteria have not an obligatory dependency of the 
host for their reproduction [23], but it seems that exist certain 
specificity between the symbiotic fish and the luminous Pho-

tobacterium species. The animals that establish a relationship 
with P. leiognathi as light-organ symbionts tend to be found in 
shallower waters, whereas the fish that are symbiotic with P. 
kishitanii are usually found in deeper waters [23,34]. This ap-
parent specificity, which presumably would have a genetic 
basis, is believed to result from the host animal selecting its 
species of symbiotic bacteria and preventing that other bacte-
ria could colonize its light organs. Several authors have pro-
posed that the bioluminescent symbiosis might involve co-
evolutionary interactions [21,86], due to the animal depen-
dence of the bacterial light, its specialized anatomical adapta-
tions for harbouring bacteria, and the host family-bacterial 
species specificity.

Although bioluminescent associations appear to be highly 
specific, in some cases two Photobacterium species may be 
present within individual light organs of fish [23,34], repre-
senting a phenomenon named cosymbiosis. Furthermore, dif-
ferent species of the same fish family sometimes harbour dif-
ferent Photobacterium species or even bacteria belonging to 
other bacterial genera, like Aliivibrio or Vibrio [23,24]. In ad-
dition, distinct strains of a single species may be present with 
individual light organs of both adult and larval fish [22,24]. 
This species- and strain-level variation demonstrates the lack 
of strict specificity in bioluminescent symbiosis.

Bioluminescent symbioses of fish and squid with lumi-
nous bacteria apparently do not exhibit codivergence (co-
speciation), since phylogenies for host and their symbiotic 
bacteria present no meaningful topological congruence 
[23,34]. The patterns of symbiont-host affiliation in biolumi-
nescent symbioses observed from nature therefore are not 
likely to have arisen through coevolutionary interactions. 
However, the absence of nonluminous bacteria in light-or-
gans of fish and squid indicates that some kind of selection 
must be operative, like the environmental congruence [30]. 
The congruence between the environmental distribution of a 
predominant species of luminous bacteria and the fish devel-
opmental stage at which its light-organ is receptive to bacte-
rial colonization, determines which bacterial species and 
strains establish the symbiosis [23,34]. Some environmental 
factors, such as the temperature, influence the abundance of 
the different species of luminous bacteria in the marine envi-
ronment. Thus, lower temperatures found in deeper waters 
favour the prevalence of psychrotropic species like P. kishi-
tanii, which is the main light-organ symbiont in these wa-
ters. On the contrary, warmer waters favour the growth of 
mesophilic Photobacterium species, such as P. leiognathi 
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being fish larvae in these waters more receptive to acquire 
these bacteria as light-organ symbionts.

In short, bioluminescent symbioses, therefore, differ 
from endosymbiotic associations, which are mutually ob-
ligate relationships in which the symbiotic bacteria are 
housed intracellularly and are transferred maternally. 
Symbiotic luminous bacteria are housed extracellularly, 
and in most cases they are known not be obligately depen-
dent on the host for their reproduction. Unlike obligate 
intracellular bacteria, the symbiotic luminous bacteria 
colonize a variety of other marine habitats, including in-
testinal tracts, skin, and body fluids of marine animals, 
sediments, and seawater, where they coexist and compete 
with many other kinds of microorganisms. A second major 
difference with endosymbiotic associations is that symbi-
otic luminous bacteria are acquired from the environment 
with each new generation of the host instead of being 
transferred vertically through the maternal inheritance 
mechanisms. Another major difference between biolumi-
nescent symbiosis and endosymbiosis is that luminous 
bacteria and their host animals show no evidence of co-
speciation. Endosymbiosis is generally assumed to in-
volve coevolutionary interactions, that is, reciprocal ge-
netic changes in host and symbiont that result from the 
obligate and mutual dependence of each partner on the 
other. Detailed molecular phylogenies of bacterially lumi-
nous fish and squids, however, are very different from the 
phylogenies of their symbiotic light-organ bacteria [18]. 
This lack of host-symbiont phylogenetic congruence dem-
onstrates that the evolutionary divergence of symbiotic 
luminous bacteria has occurred independently of the evo-
lutionary divergence of their host animals. 

Bioluminescent symbioses appear to represent a para-
digm of symbiosis that differs fundamentally from associa-
tions involving obligate, intracellularly transferred symbi-
onts. While fish and squids are dependent ecologically on 
luminous bacteria, the bacteria are not obligately dependent 
on their bioluminescent hosts. The evolutionary adaptations 
for bioluminescent symbiosis, for example presence of light 
organs, accessory tissues for controlling, diffusing, and shap-
ing the emission of light, and behaviour associated with light 
emission, all are borne by the animal. No genetic adaptations 
have been identified in the bacteria that are necessary for and 
specific to their existence in light organs compared to the oth-
er habitats they colonize. Therefore, luminous bacteria seem 
to be opportunistic colonizers, able to persist in animal light-

organs as well as in a variety of other habitats to which they 
are adapted.

Other question unanswered is regarding to the benefit of 
luminescence for the non-symbiotic photobacteria. This ques-
tion has not been elucidated fully, but several explanations 
have been arisen. One of the most commonly cited explana-
tions is that the bioluminescence increases the propagation 
and dispersal of bacteria by attracting fish or other marine 
animals to consume luminous material. This hypothesis based 
mostly on the prevalence of luminous bacteria in fish gut has 
not been demonstrated experimentally. Nevertheless, Zarubin 
et al. [93] established that zooplankton that contacts and feeds 
on P. leiognathi starts to glow, and the glowing individuals are 
highly vulnerable to predation by nocturnal fish. Glowing 
photobacteria are transferred to the intestines of fish and zoo-
plankton, when they survive digestion and gain effective 
means for growth and dispersal. The use of bioluminescence, 
therefore, appears to be highly beneficial for marine bacteria, 
especially in oligotrophic areas of the deep sea.

Deep-sea sediments as habitats of Photobac-
terium species. Members of the genus Photobacterium 
are common inhabitants of marine waters sediments, includ-
ing P. aestuarii, “P. atrarenae”, P. frigidiphilum, P. gaetbuli-
cola, P. indicum, P. lipolyticum, P. lutimaris, “P. marinum”, P. 
phosphoreum, and P. profundum. From them, P. frigidiphilum, 
P. phosphoreum, and P. profundum may be considered as 
piezophilic (former barophilic) bacteria, because these spe-
cies enhance its growth at pressures above 1 atmosphere, by 
mean of several high-pressure adaptation mechanisms [9,74]. 
The adaptative traits include those related to growth, macro-
molecules and storage lipids, membrane and soluble proteins, 
the respiratory-chain compounds, replication, transcription 
and traslation [9,54,90]. These species are the only ones 
known to produce a long-chain polyunsaturated fatty acid 
(PUFA), the eicosapentaenoic acid (EPA) [58]. Recently, Le 
Bihan et al. [42] analysed the proteome of P. profundum under 
different pressure regimes, and obtained altered modes of pro-
tein function in that conditions. The authors identified differ-
entially expressed proteins involved in high pressure adapta-
tion; thus, proteins belonging to the glycolysis/gluconeogen-
esis pathway were up-regulated at high pressure, whilts sev-
eral proteins involved in the oxidative phosphorylation path-
way were up-regulated at atmospheric pressure. In addition, 
the expression of some proteins involved in nutrient transport 
or assimilation was also directly regulated by pressure.
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Pathogenesis of Photobacterium

Some species of this genus, including P. rosenbergii, P. jeanii, 
P. sanctipauli, and the two subspecies of P. damselae, have 
been reported to produce several pathologies on animal hosts, 
such as corals, sponges, fish, and homeothermic animals 
[10,56,69,83]. Unfortunately, little is known on the pathogen-
esis mechanisms of P. rosenbergii and P. sanctipauli that 
cause the coral bleaching and further dead of the corals [83]; 
however, both P. damselae subspecies have received a great 
attention as emerging pathogens for many aquatic organisms, 
including fish, mollusks and crustaceans, and even for hu-
mans [41,55,69,72,89]. 

Photobacterium damselae subsp. damselae (Pdd) is a nor-
mal inhabitant of seawater, marine sediments, seaweeds and 
marine animals [41,76], and prefers warm water conditions 
(20–30 °C). This microorganism is considered a primary 
pathogen of several species of wild- and cultured-fish causing 
wound infections and hemorrhagic septicaemia. It is also an 
opportunistic human pathogen, causing necrotizing fasciitis 
[69]. The other subspecies, P. damselae subsp. piscicida 
(Pdp), is the causal agent of fish photobacteriosis, a serious 
bacterial disease affecting different economically important 
cultured marine fish species [72]. 

Virulence factors of P. damselae. The main bacte-
rial iron-uptake systems include the production of iron-se-
questering compounds named siderophores as well as the use 
of heme group as iron source. Siderophores are chemically 
diverse low-molecular-weight iron chelators that can effec-
tively solubilize iron or remove it from other chelators and 
transport it into the cell through the corresponding membrane 
receptor proteins [43]. Some bacteria not only produce their 
own siderophores, but also express receptors capable of trans-
port xenosiderophores produced by other organisms [11]. Pdp 
and Pdd are able to acquire iron from hemin and hemoglobin 
as unique iron sources in vitro [43]. Their heme uptake sys-
tems are encoded by a gene cluster formed by 10 genes [67]. 
This heme uptake system includes a TonB-dependent outer 
membrane receptor to transport the heme group into the peri-
plasm, a periplasmic binding protein, and an ATP-binding 
cassette (ABC) to drive heme across the cytoplasmic mem-
brane [4,67]. It is also known that in Pdp, the acquisition of 
iron from its host is efficiently achieved by means of the syn-
thesis of the siderophore piscibactin [81], and its transport 
into the cell through the outer membrane receptor FrpA [62]. 

The synthesis and transport are encoded by a pathogenicity 
island, which is part of the transmissible plasmid pPHDP70. 
It has been demonstrated that this plasmid greatly contributes 
to the virulence of Pdp for fish, and that it can be horizontally 
transmitted to other marine bacteria [62]. It has also been re-
ported that Pdd expresses several high-molecular-weight out-
er membrane proteins under iron limitation conditions [69], 
and that some strains likely produce the siderophore vibrio-
ferrin [65], although other virulent strains lack this system, 
being its contribution to virulence yet uncertain. The presence 
of these or other iron uptake mechanisms in other species of 
Photobacterium is unknown, although some of the iron-up-
take related genes reported in both P. damselae subspecies are 
present in other species genomes. The role of these mecha-
nisms in non-pathogenic species is uncertain.

Bacterial extracellular products (ECP) containing phos-
pholipase, cytotoxic, and hemolytic activities may account for 
the damage to infected cells, the consequent release of the 
microorganisms, and the invasion of adjacent cells [25]. ECP 
of P. damselae strains were shown to be lethal for different 
fish species and for fish and homeothermic cell lines [40]. Re-
cently, Vences et al. [87] have demonstrated that phospholi-
pase and collagenase activities contributed to virulence of 
Pdd. It is well known the existence of a close relationship 
between the ability of a microorganism to provoke diseases 
and the production of bacterial toxins. In the case of Pdd, sev-
eral heat-labile cytolytic toxins have been reported, one of 
them named damselysin (Dly), a phospholipase-D active 
against sphingomyelin, presented strong hemolytic activity 
[38]. It has also been demonstrated that presence of gene dly 
is not a pre-requisite for the hemolytic activity and for the 
pathogenicity of Pdd, since dly-negative strains possess viru-
lence potential for animals, and also show toxicity for homeo-
therm and poikilotherm cell lines [40,61]. Rivas et al. [68] 
identified and characterized a 150 kb plasmid, pPHDD1, 
which contains the genes for both Dly and HlyApl, being the 
lastest a small pore-forming toxin (PFT) with hemolysin ac-
tivity, named phobalysin [70]. The mutation of both dly and 
hlyApl genes in a pPHDD1-harbouring strain renders the strain 
non-virulent for fish, and only slightly virulent for mice, and 
the hemolytic phenotype on sheep blood agar of a dly and 
hlyApl double mutant resembles that of naturally plasmidless 
strains [68,69]. Thus, pPHDD1-harbouring isolates of Pdd 
produce three different hemolysins, each of them individually 
prove to be sufficient to cause death in mice. Each hemolysin 
contributes to virulence in a different degree, although only 
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the Dly-producing strains caused death in fish, demonstrating 
the importance of the plasmid for the virulence of this bacte-
rium for fish. Despite the importance of pPHDD1, many Pdd 
virulent strains are plasmidless. The hemolytic activity exhib-
ited by these strains is due to hemolysin PhlyC, encoded by 
the chromosome-harbored hlyAch gene [69,87], which contrib-
utes to virulence for fish [87]. 

In Pdp a key pathogenicity factor is an exotoxin, a plas-
mid-encoded apoptosis-inducing protein of 56 kDa (AIP56), 
responsible for apoptogenic activity against fish macrophages 
and neutrophils [16]. The AIP56 toxin is a zinc metalloprote-
ase involved in binding and internalization into the cytosol of 
target cells [77], and acts inducing the activation of caspases 
8, 9 and 3, the loss of mitochondrial membrane potential, the 
release of cytochrome c into the cytosol, and the overproduc-
tion of ROS, which suggest that the exotoxin activates both 
extrinsic and intrinsic apoptotic pathways [12]. Through the 
activation of the cell death process involving macrophages 
and neutrophils, the pathogen is able to subvert the immune 
defenses of the host and to produce infectious disease.

Little is known on the adherent properties to cells of Pdd, 
although Khouadja et al. [35] established that this subspecies 
possess the ability to adhere to fish mucus. On the contrary, 
Pdp is adherent mainly for fish cells [53], and the adherence 
is heat-sensitive, but it is not affected by proteases or by treat-
ing the bacteria with antisera raised against its LPS [53]. Nev-
ertheless, the precise nature of the mechanism responsible for 
adherence and interaction with host cell receptors and viru-
lence factors contributing to the invasion of fish nonphago-
cytic cells is still unknown [1,3]. 

Pdp is considered weakly to moderately invasive to 
several poikilothermic cell lines. López-Doriga et al. [44] 
showed that the uptake of Pdp by EPC cells is time and 
bacterial-concentration dependant. These authors have 
been suggested that internalization of this microorganism 
by EPC cells is receptor-ligand mediated (zipper mecha-
nism). Pdp isolates also show the ability to spread to adja-
cent cells from initially infected cells, forming plaques of 
dead cells [53]. Similar to that previously reported for 
other Gram-negative pathogenic bacteria, invasion by Pdp 
can be inhibited by cytochalasin D, indicating that actin 
and microfilament-dependent mechanisms are required 
for bacterial internalization [53].

Virulent Pdp strains are serum resistant and can grow 
in fresh fish serum, whereas non-virulent strains are sensi-
tive to serum killing and their growth is totally inhibited in 

fresh serum [3]. The inhibitory effect of the serum on the 
non-virulent strains, however, is totally lost if the comple-
ment is inactivated by heating at 56 °C for 1 h [51]. Serum 
resistance is also associated with capsule production, 
since capsulated strains prevent formation of C3 conver-
tase (C3bBb) by failing to bind serum protein B, or by a 
higher affinity for serum protein H than for B. Therefore, 
capsulated strains evade more efficiently the bacteriolytic 
activity of fresh serum [53]. Pdp capsule formation de-
pends on growth conditions; thus, cells grown under iron-
limited conditions or old-cultures had a significantly re-
duced amount of capsular material [14]. Studies that de-
scribe the contribution of bacterial capsules to adhesion 
and invasion of host cells are contradictory [44,52]. The 
presence of a capsule prevents the opsonization by C3b, 
and bacteria will not efficiently be engulfed by fish mac-
rophages [5]. Furthermore, the capsule plays an important 
role in lethality of Pdp to fish, as non-virulent strains in-
duced for capsule expression resulted in a reduction of 
LD50 values [52].

The ability of Pdp to avoid phagocytosis and thus to 
cause disease, may be explained by the induction of exten-
sive apoptosis on macrophages and neutrophils present in 
Pdp-infected foci, resulting in lysis of these leukocytes by 
post-apoptotic secondary necrosis [15]. There are contra-
dictory results on the interaction of Pdp with phagocytes; 
whereas intact bacteria within phagocytes have been ob-
served in vivo [59], suggesting that Pdp may survive in-
side macrophages, other in vitro studies indicate that fish 
macrophages are able to kill the bacteria by means of acti-
vation of the respiratory burst or an iron-SOD activity 
[5,8,78]. 

Future perspectives 

In this review, we have described some aspects of the ge-
nus Photobacterium, including taxonomy, phylogeny, 
ecology and pathological mechanisms. There is still a lack 
of understanding of several features encoded by Photo-
bacterium genomes, such as the novel genes involved in 
the adaptation to specific habitats, the study of new meta-
bolic pathways and their involved genes, and other cellu-
lar functions and metabolites produced by these microor-
ganisms. Moreover, the ability of several species of this 
genus to produce polyunsaturated fatty acids, cold-adapted 



Int. Microbiol. Vol. 20, 2017 LABELLA ET AL.080808

enzymes and antimicrobial compounds constitutes new 
ways of investigation for a potential biotechnological ap-
plication of these products in the future. 
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