An International Double-Blind, Peer-Review Journal by NSTRI

Document Type : Research paper

Authors

1 Physics & Accelerators Research School, Nuclear Science and Technology Research Institute, 14395-836 Tehran, Iran

2 Director Management of Geohazards, Engineering and Environmental Geology, Tehran, Iran

3 Geological Survey of Iran

4 Geological Survey of Iran, Southwestern Area (Ahvaz Center), Ahvaz, Iran

Abstract

This study aimed to investigate the distribution of natural and anthropogenic pollutants and the enrichment of elements in air dust of Khuzestan province following the dust events. Dust samples were collected from nine regions including, Abadan, Ahvaz, Hoveyzeh, Susangerd, Shush, Omidieh, Ramhormoz, and Mahshahr. The INAA technique measured the concentration of elements. Using the results of PMF modeling and investigation of obtained factors for samples, a suitable reference element with the most negligible influence from pollutant sources was selected and used for EF calculations.  The results showed very large enrichments with EF> 20 for elements such as Zn, Se, Br in Susangerd, Ahvaz, and Abadan. The concentrations of Fe, Al, and Mg in some areas of the province were much higher than LC50. The enrichment factors and the correlations between the elements in the samples of various regions showed their dependence on local pollutant sources.

Keywords

1.    A. S. Goudie and N. J. Middleton, Desert Dust in ‎the Global System, Springer, Berlin, Heidelberg, 1th ed., 2006.
 
2. D. Francis, The dust load and radiative impact associated with the June 2020 ‎historical Saharan dust storm, Atmos. Environ, 268, 118808 (2020)‎
 
3. P. Kulkarni, S. Chellam and M.P. Fraser, Lanthanum, and Lanthanides in ‎Atmospheric Fine Particles and Their Apportionment to Refinery and Petrochemical ‎Operations in Houston, TX, Atmos. Environ, 40(3), 508 (2006).
 
4. L. Gandois et al,  Use of Geochemical Signatures, Including Rare Earth Elements, ‎in Mosses and Lichens to Assess Spatial Integration and the Influence of Forest ‎Environment, Atmos. Environ. 95, 96 (2014).
 
5.  J.M. Lim et al,. Source apportionment of PM10 at a small industrial area using ‎Positive Matrix Factorization, Atmos. Environ. 95 (1), 88 (2010).
 
6.   P.G. Stegmann and P. Yang, A Regional, Size-Dependent, and Causal Effective ‎Medium Model for Asian and Saharan Mineral Dust Refractive Index Spectra, ‎J. Aero. Sci., 14, 327 (2017).
 
7. B. Jancsek-Turóczi et al, Sampling and Characterization of Resuspended and ‎Respirable Road Dust, Journal of Aerosol Science, 65, 69 (2013).
 
8.       S.K. Song, Influence of Meteorological Conditions on Trans-Pacific Transport of ‎Asian Dust During Spring Season, J. Aero. Sci. 39 (11), 1003 (2008)
 
9.     B.E. Kim and M.K. Kim, Source Identification of Dust-Fall at Seashore in Korea ‎by Positive Matrix Factorization, J. Aero. Sci. 35, S1147(2004).
 
10.  J. Darvishi Khatooni, Composition and origin of foreign dust in Khuzestan ‎province,15, 93(2016).
 
11. ECHA, (European Chemical Agency), https://echa.europa.eu/ registration-dossier/-‎‎/registered-dossier/15494/7/3/1, accessed in June 2021.
 
12. ECHA, (European Chemical Agency), https://echa.europa.eu/registration-dossier/-/registered -dossier/15551/7/3/1 , accessed in June 2021.‎
 
13. ECHA, (European Chemical Agency), https://echa.europa.eu/registration-dossier/-‎‎/registered-dossier/10184/7/3/1, accessed in June 2021.‎
 
14. ECHA, (European Chemical Agency), https://echa.europa.eu/registration-dossier/-‎‎/registered-dossier/15506/7/3/1, accessed in June 2021.‎
 
15. ECHA, (European Chemical Agency), https://echa.europa.eu/registration-dossier/-‎‎/registered-dossier/6440/7/3/1, accessed in June 2021.
 
16. ECHA, (European Chemical Agency), https://echa.europa.eu/registration-dossier/-‎‎/registered-dossier/16139/7/3/1, accessed in June 2021.‎
 
17.   M. Таlerko et al, Simulation Study of Radionuclide Atmospheric Transport after ‎Wildland Fires in the Chernobyl, APR, 12(3), 193 (2020).
 
18.   Z. Xu et al, Heavy metal pollution characteristics and health risk assessment of dust ‎fall related to industrial activities in desert steppes, PeerJ, 9, 12430 (2021)
 
19.  S. K. Pal, R. Roy, Evaluatiing heavy metals emission pattern on road influenced by ‎urban layout, Transp, 10, 100362 (2021)‎
 
20.   M. Shirini et al, Pollution and contamination asenssment of heavy metals in the ‎sediments of Jazmurian playa in southeat Iran, Sci Rep, 10, 4775 (2020)‎
 
21.   S. Kumari, M. Kumar Jain, S. Pandian Elumalai, Assessment of Pollution and ‎Health Risks of Heavy Metals in Particulate Matter and Road Dust Along the Road ‎Network of Dhanbad, India, J. Health Pollut. 11(29):210305 ‎
 
22.   M. Barbieri, The Importance of Enrichment Factor (EF) and Geoaccumulation Index ‎‎(Igeo) to Evaluate the Soil Contamination, J Geol Geophys. 5 (1) (2016).
 
23.   G.C. Fang et al, Size Distributions of Ambient Air Particles and Enrichment ‎Factor Analyses of Metallic Elements Taichung Harbor near the Taiwan Strait, Atmos. ‎Res. 81(4), 320 (2006). ‎
 
24.   P. Kantor et al, Comparison of Enrichment Factors for Heavy Metals in Urban ‎Street Dust and Air Aerosols, J. Pol. Miner. Eng. Soc. 19 (1), 206 (2018). ‎
 
25.   S. Dytłow and B. G.  Kostrubiec, Concentration of Heavy Metals in Street dust: ‎an Implication of Using Different Geochemical Background Data in Estimating the Level ‎of Heavy Metal Pollution, Environ Geochem Health, 43, 521 (2021).
 
26. INTERNATIONAL ATOMIC ENERGY AGENCY, Sampling and Analytical ‎Methodologies for Instrumental Neutron Activation Analysis of Airborne Particulate ‎Matter, Training Course Series (1992)‎
 
27. C. Reimann , R.G. and Garrett, Geochemical Background-Concept and Reality,  ‎Sci. Total Environ. 350 (1-3), 12 (2005).  ‎
 
28.  E. Triantafyllou et al, Contribution of Locally-Produced and Transported Air ‎Pollution to Particulate Matter in a Small Insular Coastal City, APR, 11(4), 667 (2020). ‎
 
29.  A. Febo et al,  Local air pollution and long–range mass transport of atmospheric ‎particulate matter: A comparative study of the temporal evolution of the aerosol size ‎fractions, APR , 1 (3), 141 (2010).‎
 
30.   K. Lin, Seasonal Characteristics of PM2.5 and its Chemical Species in the Northern ‎Rural China. APR, 11, 1891 (2020). ‎
 
31.  W. Javed and B. Guo, Chemical characterization and source apportionment of ‎fine and coarse atmospheric particulate matter in Doha, Qatar, APR, 12 (2), 122 (2021). ‎
 
32.  R. Zhao et al, Element Composition and Source Apportionment of Atmospheric ‎Aerosols over the China Sea, APR, 6 (2), 191(2015). ‎
 
33. W.H. Zoller, E.S. Gladney, and R.A.  Duce, Atmospheric Concentrations and ‎Sources of trace Metals at the South Pole, Science. 183, 198 (1974).
 
34.    S.R. Taylor, Abundance of Geochemical Elements in the Continental Crust: A ‎New Table, Geochemical et Cosmochimca Acta, 28 (8), 1273 (1964‎)
 
35.   L. Lucadamo and L.G.A.  Corapi, Power plants: The Need for Effective Bio ‎monitoring of the Contribution of Bio (Wood) Fuelled Stations to Atmospheric ‎Contamination, APR, 10 (6), 2040 (2019).
 
36.   R.B. Carleton, K. Walton-Day and D.L. Naftz, Improved enrichment factor ‎calculations through principal component analysis: Examples from Soils Near Breccia ‎Pipe Uranium Mines, Arizona, USA, Environ. Pollut. 248, 90 (2019).
 
37. H. Akoglu, User's Guide to Correlation Coefficients. Turk J Emerg Med, 18 (3), ‎‎91(2018).
 
38. S.J. Ramos, et al, Rare Earth Elements in the Soil Environment, Curr Pollution ‎Rep, 2, (28) (2016).
 
39.   M. Edahbi et al, Rare Earth Elements (La, Ce, Pr, Nd, and Sm) from a ‎Carbonatite Deposit: Mineralogical Characterization and Geochemical Behavior, ‎Minerals, 8 (55) (2018).  ‎
 
40. Y. Arfala et al, Assessment of Heavy Metals Released into the Air from the Cement ‎Kilns Co-Burning Waste: Case of Oujda Cement Manufacturing (Northeast Morocco), ‎SER, 28, 363 (2108) 
 
41.  R. Meij, Trace Element Behavior in Coal-Fired Power Plants, FPT. 30 (1-3), 199 ‎‎(1994). ‎
 
42.  F. A. Atiku1et al, Comparative Test Analysis of Petroleum (Diesel and Gasoline) ‎Soots as Potential Sources of Toxic Metals from Exhausts of Power Plants, Scholars ‎Research Library, Arch Appl Sci Res, 3 (4), 147 (2011).‎
 
43.  J.A. Caruso et al, Petroleum Coke in the Urban Environment: A Review of ‎Potential Health Effects. IJERPH, 29, 12 (6), 6218, (2015). ‎
 
44. T. Thi et al, Release of Trace Elements from Bottom Ash from Hazardous Waste ‎Incinerators. Recycling. 3, 36 (2018). ‎
 
45.  A. Font, Using Metal Ratios to Detect Emissions from Municipal Waste ‎Incinerators in Ambient Air Pollution Data, Atmos. Environ, 113, 177 (2015). ‎
 
46.   Lee B Clarke, The Fate of Trace Elements During Coal Combustion and ‎Gasification: an Overview, Fuel, 72 (6), 731(1993). ‎
 
47. Q.L. Dai et al, Characterization and Source Identification of Heavy Metals in ‎Ambient PM10 and PM2.5 in an Integrated Iron and Steel Industry Zone Compared with a ‎Background Site. AAQR, 15, 875(2015). ‎
 
48.   A. González and R. Navia Fly Ashes from Coal and Petroleum Coke Combustion: ‎Current and Innovative Potential Applications, Waste Manag Res, 27, 976 (2009).‎
 
49. L. H. Ahrens, Origin and Distribution of the Elements, 1th Edition (International ‎Series of Monographs in Earth Sciences, 1968).‎
 
50. EPA-PFF 5.0. United State Environmental Protection Agency ‎https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-‎analyses.