ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Wetting Behavior of Sintered Nanocrystalline Powders by Armco Fe and 22CrNiMoV5-3 Steel Grade Using Sessile Drop Wettability Technique
Zuriñe AmondarainLeiv KolbeinsenJose Luis Arana
Author information
JOURNAL FREE ACCESS

2011 Volume 51 Issue 5 Pages 733-742

Details
Abstract

The wettability of sintered nanocrystalline oxide powders (CeO2, TiO2, Y3Al5O12, and ZrO2-yttria stabilized) and Al2O3 basis powder (60–70% purity) (product originated in the secondary aluminium production, composed mainly of nano and micrometric aluminium oxide) by liquid Armco Fe and by 22CrNiMoV5-3 steel grade was studied using sessile drop wettability technique. The powders were pressed and sintered under different pressures, heating rates and holding times. The later grinding and polishing surface treatments were characterized by infinite focus microscope. The wetting experiments were carried out under pure Ar atmosphere. A small piece of Armco Fe and steel grade was melted on sintered nano oxides, heating up to 1600°C with a holding time of 10 minutes for each experiment. The contact angles were measured and chemical analyses were conducted on tested samples to characterize the wetting reactions. It was found that sintered nano TiO2 not only suffered considerable wetting by Armco Fe and 22CrNiMoV5-3 steel in both cases, but also reacted with the substrate to form ilmenite and pseudobrookite. The CeO2 substrate and Armco Fe system also showed good wetting behavior. In general terms, it was concluded that wettability was affected by substrate chemical composition, and surface characteristics by sintering conditions. The preliminary results of this investigation may help to determine the suitability of the nanoparticle to be added in a liquid iron based matrix in order to influence the microstructure evolution improving mechanical properties by a fine distribution in the metallic alloy.

Content from these authors
© 2011 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top