ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Reverse Austenite Transformation Behavior of Equal Channel Angular Pressed Low Carbon Ferrite/Pearlite Steel
Kyung-Tae ParkEui Gil LeeChong Soo Lee
Author information
JOURNAL FREE ACCESS

2007 Volume 47 Issue 2 Pages 294-298

Details
Abstract

Reverse austenite transformation characteristics of ultrafine grained ferrite/pearlite low carbon steel were examined by using a dilatometry with a heating rate of 10°C/s, and compared with those of coarse grained counterpart. Ultrafine grained steel was prepared by equal channel angular pressing at 500°C, resulting in a microstructure consisting of ultrafine ferrite grains and pearlite with partially dissolved pearlitic cementite. Reverse austenite transformation start and finish temperatures of ultrafine grained steel were lower than those of coarse grained steel. Reverse austenite transformation of coarse grained steel occurred with the two serial stages of pearlite→austenite followed by proeutectoid ferrite→austenite. In the case of ultrafine grained steel, reverse austenite transformation was manifested by the three serial stages of carbon-supersaturated ferrite→austenite, pearlite→austenite, and proeutectoid ferrite→austenite in the order. The formation of carbon-supersaturated ferrite in ultrafine grained steel is associated with carbon dissolution from pearlitic cementite during equal channel angular pressing. The effect of equal channel angular pressing on reverse austenite transformation temperatures can be explained in terms of the difference in shear stress driving transformation between two steels under assumption that the nature of carbon-supersaturated ferrite in ultrafine grained steel is similar to that of conventional martensite.

Content from these authors
© 2007 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top