Effect of Potassium Permanganate on Staphylococcal Isolates Derived from the Skin of Patients with Atopic Dermatitis

Authors

  • Sigrid Lundgren Department of Dermatology and Venereology, Skåne University Hospital, Lund, Sweden; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center B14, Lund, Sweden https://orcid.org/0000-0001-6693-0233
  • Andreas Sonesson Department of Dermatology and Venereology, Skåne University Hospital, Lund, Sweden; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center B14, Lund, Sweden https://orcid.org/0000-0003-1946-5927

DOI:

https://doi.org/10.2340/actadv.v104.18642

Keywords:

atopic dermatitis, Staphylococcus aureus, Staphylococcus epidermidis, biofilm, bacteria, potassium permanganate, antibacterial

Abstract

In atopic dermatitis (AD), Staphylococcus aureus frequently colonizes lesions, leading to superinfections that can then lead to exacerbations. The presence of biofilm-producing isolates has been associated with worsening of the disease. Potassium permanganate is used as a topical treatment of infected eczema, blistering conditions, and wounds. Little is known of its effects against microbes in AD skin. The aim of this study was to explore antibacterial and antibiofilm properties of potassium permanganate against staphylococcal isolates derived from AD skin. Viable count and radial diffusion assays were used to investigate antibacterial effects of potassium permanganate against planktonic staphylococcal isolates. The antibiofilm effects were assessed using biofilm assays and scanning electron microscopy. The Staphylococcus aureus isolates were completely killed when exposed to 0.05% of potassium permanganate. In concentrations of 0.01%, potassium permanganate inhibited bacterial biofilm formation. Eradication of established staphylococcal biofilm was observed in concentrations of 1%. Electron microscopy revealed dense formations of coccoidal structures in growth control and looser formations of deformed bacteria when exposed to potassium permanganate. This suggests antibacterial and antibiofilm effects of potassium permanganate against staphylococcal isolates derived from AD skin, when tested in vitro, and a potential role in the treatment of superinfected AD skin.

Downloads

Download data is not yet available.

References

Weidinger, S. and N. Novak. Atopic dermatitis. Lancet 2016; 387: 1109-1122.

https://doi.org/10.1016/S0140-6736(15)00149-X DOI: https://doi.org/10.1016/S0140-6736(15)00149-X

Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol 2013; 132: 1132-1138.

https://doi.org/10.1016/j.jaci.2013.08.031 DOI: https://doi.org/10.1016/j.jaci.2013.08.031

Allen HB, Vaze ND, Choi C, Hailu T, Tulbert BH, Cusack C, et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol 2014; 150: 260-265.

https://doi.org/10.1001/jamadermatol.2013.8627 DOI: https://doi.org/10.1001/jamadermatol.2013.8627

Park HY, Kim CR, Huh IS, Jung MY, Seo EY, Park JH, et al. Staphylococcus aureus colonization in acute and chronic skin lesions of patients with atopic dermatitis. Ann Dermatol 2013; 25: 410-416.

https://doi.org/10.5021/ad.2013.25.4.410 DOI: https://doi.org/10.5021/ad.2013.25.4.410

Breuer K, S HA, Kapp A, Werfel T. Staphylococcus aureus: colonizing features and influence of an antibacterial treatment in adults with atopic dermatitis. Br J Dermatol 2002; 147: 55-61.

https://doi.org/10.1046/j.1365-2133.2002.04872.x DOI: https://doi.org/10.1046/j.1365-2133.2002.04872.x

Goh CL, Wong JS, Giam YC. Skin colonization of Staphylococcus aureus in atopic dermatitis patients seen at the National Skin Centre, Singapore. Int J Dermatol 1997; 36: 653-657.

https://doi.org/10.1046/j.1365-4362.1997.00290.x DOI: https://doi.org/10.1046/j.1365-4362.1997.00290.x

Bjerre R.D, Bandier J, Skov L, Engstrand L, Johansen JD. The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol 2017;177: 1272-1278.

https://doi.org/10.1111/bjd.15390 DOI: https://doi.org/10.1111/bjd.15390

Ochlich D, Rademacher F, Drerup KA, Glaser R, Harder J. The influence of the commensal skin bacterium Staphylococcus epidermidis on the epidermal barrier and inflammation: Implications for atopic dermatitis. Exp Dermatol 2023; 32: 555-561.

https://doi.org/10.1111/exd.14727 DOI: https://doi.org/10.1111/exd.14727

Allen HB, Mueller JL. A novel finding in atopic dermatitis: film-producing Staphylococcus epidermidis as an etiology. Int J Dermatol 2011; 50: 992-993.

https://doi.org/10.1111/j.1365-4632.2010.04648.x DOI: https://doi.org/10.1111/j.1365-4632.2010.04648.x

Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15: 167-193.

https://doi.org/10.1128/CMR.15.2.167-193.2002 DOI: https://doi.org/10.1128/CMR.15.2.167-193.2002

Wells CL, Henry-Stanley MJ, Barnes AM, Dunny GM, Hess DJ. Relation between antibiotic susceptibility and ultrastructure of Staphylococcus aureus biofilms on surgical suture. Surg Infect (Larchmt) 2011; 12: 297-305.

https://doi.org/10.1089/sur.2010.104 DOI: https://doi.org/10.1089/sur.2010.104

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284: 1318-1322.

https://doi.org/10.1126/science.284.5418.1318 DOI: https://doi.org/10.1126/science.284.5418.1318

Di Domenico EG, Cavallo I, Bordignon V, Prignano G, Sperduti I, Gurtner A, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep 2018; 8: 9573.

https://doi.org/10.1038/s41598-018-27421-1 DOI: https://doi.org/10.1038/s41598-018-27421-1

Sonesson A, Przybyszewska K, Eriksson S, Morgelin M, Kjellstrom S, Davies J, et al. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep 2017; 7: 8689.

https://doi.org/10.1038/s41598-017-08046-2 DOI: https://doi.org/10.1038/s41598-017-08046-2

Gonzalez T, Stevens ML, Baatyrbek Kyzy A, Alacron R, He H, Kroner JW, et al. Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy 2021; 76: 302-313.

https://doi.org/10.1111/all.14489 DOI: https://doi.org/10.1111/all.14489

Sonesson, A, Kasetty G, Olin AL, Malmsten M, Morgelin M, Sorensen OE, et al. Thymic stromal lymphopoietin exerts antimicrobial activities. Exp Dermatol 2011; 20: 1004-1010.

https://doi.org/10.1111/j.1600-0625.2011.01391.x DOI: https://doi.org/10.1111/j.1600-0625.2011.01391.x

Hell E, Giske CG, Nelson A, Romling U, Marchini G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 2010; 50: 211-215.

https://doi.org/10.1111/j.1472-765X.2009.02778.x DOI: https://doi.org/10.1111/j.1472-765X.2009.02778.x

Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A.The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37: 1771-1776.

https://doi.org/10.1128/JCM.37.6.1771-1776.1999 DOI: https://doi.org/10.1128/JCM.37.6.1771-1776.1999

Stalder JF, Fleury M, Sourisse M, Allavoine T, Chalamet C, Brosset P, et al. Comparative effects of two topical antiseptics (chlorhexidine vs KMn04) on bacterial skin flora in atopic dermatitis. Acta Derm Venereol 1992; 176: 132-134.

Guzik TJ, Bzowska M, Kasprowics A, Czerniawska-Mysik G, Wojcik K, Szmyd D, et al. Persistent skin colonization with Staphylococcus aureus in atopic dermatitis: relationship to clinical and immunological parameters. Clin Exp Allergy 2005; 35: 448-455.

https://doi.org/10.1111/j.1365-2222.2005.02210.x DOI: https://doi.org/10.1111/j.1365-2222.2005.02210.x

Vlassova N, Han A, Zenilman JM, James G, Lazarus GS. New horizons for cutaneous microbiology: the role of biofilms in dermatological disease. Br J Dermatol 2011; 165: 751-759.

https://doi.org/10.1111/j.1365-2133.2011.10458.x DOI: https://doi.org/10.1111/j.1365-2133.2011.10458.x

Eriksson S, vand der Plas MJ, Morgelin M, Sonesson A. Antibacterial and anti-biofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol 2017; 177: 513-521

https://doi.org/10.1111/bjd.15410 DOI: https://doi.org/10.1111/bjd.15410

Hansson C, Faergemann J. The effect of antiseptic solutions on microorganisms in venous leg ulcers. Acta Derm Venereol 1995; 75: 31-33.

https://doi.org/10.2340/00015555753133 DOI: https://doi.org/10.2340/00015555753133

Baron S, Moss C. Caustic burn caused by potassium permanganate. Arch Dis Child 2003; 88: 96.

https://doi.org/10.1136/adc.88.2.96 DOI: https://doi.org/10.1136/adc.88.2.96

Gelmetti C. Skin cleansing in children. J Eur Acad Dermatol Venereol 2001; 15: 12-15.

https://doi.org/10.1046/j.0926-9959.2001.00003.x DOI: https://doi.org/10.1046/j.0926-9959.2001.00003.x

Published

2024-02-28

How to Cite

Lundgren, S., & Sonesson, A. (2024). Effect of Potassium Permanganate on Staphylococcal Isolates Derived from the Skin of Patients with Atopic Dermatitis. Acta Dermato-Venereologica, 104, adv18642. https://doi.org/10.2340/actadv.v104.18642