Knee and ankle range of motion and spasticity from childhood into adulthood: a longitudinal cohort study of 3,223 individuals with cerebral palsy

Authors

  • Erika Cloodt Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund; Department of Research and Development, Region Kronoberg, Växjö
  • Anna Lindgren Centre for Mathematical Sciences, Lund University, Lund https://orcid.org/0000-0002-3839-2498
  • Elisabet Rodby-Bousquet Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund; Centre for Clinical Research Västerås, Uppsala University-Region Västmanland, Västerås, Sweden

DOI:

https://doi.org/10.2340/17453674.2024.40606

Keywords:

Cerebral Palsy, Foot and ankle, Knee, Range of motion, Spasticity

Abstract

Background and purpose: Reduced range of motion (ROM) and spasticity are common secondary findings in cerebral palsy (CP) affecting gait, positioning, and everyday functioning. These impairments can change over time and lead to various needs for intervention. The aim of this study was to analyze the development path of the changes in hamstring length, knee extension, ankle dorsiflexion, and spasticity in hamstrings and gastrosoleus from childhood into adulthood in individuals with CP at the Gross Motor Function Classification System (GMFCS) levels I–V.
Methods: A longitudinal cohort study was undertaken of 61,800 measurements in 3,223 individuals with CP, born 1990–2017 and followed for an average of 8.7 years (range 0–26). The age at examination varied between 0 and 30 years. The GMFCS levels I–V, goniometric measurements, and the modified Ashworth scale (MAS) were used for repeated assessments of motor function, ROM, and spasticity.
Results: Throughout the follow-up period, knee extension and hamstring length exhibited a consistent decline across all individuals, with more pronounced decreases evident in those classified at GMFCS levels III–V. Ankle dorsiflexion demonstrated a gradual reduction from 15° to 5° (GMFCS I–IV) or 10° (GMFCS V). Spasticity levels in the hamstrings and gastrosoleus peaked between ages 5 and 7, showing a propensity to increase with higher GMFCS levels.
Conclusion: Passive ROM continues to decrease to 30 years of age, most pronouncedly for knee extension. Conversely, spasticity reached its peak at a younger age, with a more notable occurrence observed in the gastrosoleus compared with the hamstrings. Less than 50% of individuals had spasticity corresponding to MAS 2–4 at any age.

Downloads

Download data is not yet available.

References

Nordmark E, Hägglund G, Lauge-Pedersen H, Wagner P, Westbom L. Development of lower limb range of motion from early childhood to adolescence in cerebral palsy: a population-based study. BMC Med 2009; 7: 65. doi: 10.1186/1741-7015-7-65. DOI: https://doi.org/10.1186/1741-7015-7-65

Flanigan M, Gaebler-Spira D, Kocherginsky M, Garrett A, Marciniak C. Spasticity and pain in adults with cerebral palsy. Dev Med Child Neurol 2020; 62: 379-85. doi: 10.1111/dmcn.14368. DOI: https://doi.org/10.1111/dmcn.14368

Hägglund G, Andersson S, Düppe H, Lauge-Pedersen H, Nordmark E, Westbom L. Prevention of severe contractures might replace multilevel surgery in cerebral palsy: results of a population-based health care programme and new techniques to reduce spasticity. J Pediatr Orthop B 2005; 14: 269-73. doi: 10.1097/01202412-200507000-00007. DOI: https://doi.org/10.1097/01202412-200507000-00007

Lindén O, Hägglund G, Rodby-Bousquet E, Wagner P. The development of spasticity with age in 4,162 children with cerebral palsy: a register-based prospective cohort study. Acta Orthop 2019; 90: 286-91. doi: 10.1080/17453674.2019.1590769. DOI: https://doi.org/10.1080/17453674.2019.1590769

Fosdahl MA, Jahnsen R, Pripp A H, Holm I. Change in popliteal angle and hamstrings spasticity during childhood in ambulant children with spastic bilateral cerebral palsy: a register-based cohort study. BMC Pediatr 2020; 20: 11. doi: 10.1186/s12887-019-1891-y. DOI: https://doi.org/10.1186/s12887-019-1891-y

Cloodt E, Lindgren A, Lauge-Pedersen H, Rodby-Bousquet E. Sequence of flexion contracture development in the lower limb: a longitudinal analysis of 1,071 children with cerebral palsy. BMC Musculoskelet Disord 2022; 23: 629. doi: 10.1186/s12891-022-05548-7. DOI: https://doi.org/10.1186/s12891-022-05548-7

McDowell B C, Salazar-Torres J J, Kerr C, Cosgrove A P. Passive range of motion in a population-based sample of children with spastic cerebral palsy who walk. Phys Occup Ther Pediatr 2012; 32: 139-50. doi: 10.3109/01942638.2011.644032. DOI: https://doi.org/10.3109/01942638.2011.644032

Cloodt E, Krasny J, Jozwiak M, Rodby-Bousquet E. Interrater reliability for unilateral and bilateral tests to measure the popliteal angle in children and youth with cerebral palsy. BMC Musculoskelet Disord 2021; 22: 275. doi: 10.1186/s12891-021-04135-6. DOI: https://doi.org/10.1186/s12891-021-04135-6

Moon S J, Choi Y, Chung C Y, Sung K H, Cho B C, Chung M K, et al. Normative values of physical examinations commonly used for cerebral palsy. Yonsei Med J 2017; 58: 1170-6. doi: 10.3349/ymj.2017.58.6.1170. DOI: https://doi.org/10.3349/ymj.2017.58.6.1170

Moseley A M, Crosbie J, Adams R. Normative data for passive ankle plantarflexion–dorsiflexion flexibility. Clin Biomech 2001; 16: 514-21. doi: 10.1016/S0268-0033(01)00030-4. DOI: https://doi.org/10.1016/S0268-0033(01)00030-4

Smith L R, Chambers H G, Lieber R L. Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol 2013; 55: 264-70. doi: 10.1111/dmcn.12027. DOI: https://doi.org/10.1111/dmcn.12027

Barrett R S, Lichtwark G A. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol 2010; 52: 794-804. doi: 10.1111/j.1469-8749.2010.03686.x. DOI: https://doi.org/10.1111/j.1469-8749.2010.03686.x

Cloodt E, Rosenblad A, Rodby-Bousquet E. Demographic and modifiable factors associated with knee contracture in children with cerebral palsy. Dev Med Child Neurol 2018; 60: 391-6. doi: 10.1111/dmcn.13659. DOI: https://doi.org/10.1111/dmcn.13659

Herzenberg J E, Lamm B M, Corwin C, Sekel J. Isolated recession of the gastrocnemius muscle: the Baumann procedure. Foot Ankle Int 2007; 28: 1154-9. doi: 10.3113/fai.2007.1154. DOI: https://doi.org/10.3113/FAI.2007.1154

Rasmussen H M, Svensson J, Thorning M, Pedersen N W, Overgaard S, Holsgaard-Larsen A. Threshold values of ankle dorsiflexion and gross motor function in 60 children with cerebral palsy. Acta Orthop 2018; 89: 437-42. doi: 10.1080/17453674.2018.1456749. DOI: https://doi.org/10.1080/17453674.2018.1456749

Wingstrand M, Hägglund G, Rodby-Bousquet E. Ankle–foot orthoses in children with cerebral palsy: a cross sectional population based study of 2200 children. BMC Musculoskelet Disord 2014; 15: 327. doi: 10.1186/1471-2474-15-327. DOI: https://doi.org/10.1186/1471-2474-15-327

Hägglund G, Hollung S J, Ahonen M, Andersen G L, Eggertsdóttir G, Gaston M S, et al. Treatment of spasticity in children and adolescents with cerebral palsy in Northern Europe: a CP-North registry study. BMC Neurol 2021; 21: 276. doi: 10.1186/s12883-021-02289-3. DOI: https://doi.org/10.1186/s12883-021-02289-3

Gorter J W, Rosenbaum P L, Hanna S E, Palisano R J, Bartlett D J, Russell D J, et al. Limb distribution, motor impairment, and functional classification of cerebral palsy. Dev Med Child Neurol 2004; 46: 461-7. doi: 10.1017/s0012162204000763. DOI: https://doi.org/10.1111/j.1469-8749.2004.tb00506.x

Gough M. Spasticity in children with cerebral palsy: what are we treating? Dev Med Child Neurol 2018; 60: 638. doi: 10.1111/dmcn.13770. DOI: https://doi.org/10.1111/dmcn.13770

Scholtes V A, Becher J G, Beelen A, Lankhorst G J. Clinical assessment of spasticity in children with cerebral palsy: a critical review of available instruments. Dev Med Child Neurol 2006; 48: 64-73. doi: 10.1017/S0012162206000132. DOI: https://doi.org/10.1017/S0012162206000132

Published

2024-05-06

How to Cite

Cloodt, E., Lindgren, A., & Rodby-Bousquet, E. (2024). Knee and ankle range of motion and spasticity from childhood into adulthood: a longitudinal cohort study of 3,223 individuals with cerebral palsy. Acta Orthopaedica, 95, 200–205. https://doi.org/10.2340/17453674.2024.40606