Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-25T18:35:37.002Z Has data issue: false hasContentIssue false

A quantum-mechanical central limit theorem

Published online by Cambridge University Press:  14 July 2016

C. D. Cushen
Affiliation:
University of Nottingham
R. L. Hudson
Affiliation:
University of Nottingham

Abstract

The concepts of distribution operator, stochastic independence, convergence in distribution and normal distribution are formulated for pairs of canonically conjugate quantum-mechanical momentum and position operators. It is shown that if the sequence (pn, qn), n = 1, 2, ··· is stochastically independent and identically distributed with finite covariance and zero mean then the sequence of pairs of canonical observables converges in distribution to a normal limit distribution.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1971 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araki, H. (1960) Hamiltonian formalism and the canonical commutation relations in quantum field theory. J. Math. Phys. 1, 492504.Google Scholar
Dixmier, J. (1958) Sur la relation i(PQQP) = 1. Comp. Math. 13, 263270.Google Scholar
Gleason, L. M. (1957) Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885894.Google Scholar
Gudder, S. (1967) Hilbert space independence and generalised probability. J. Math. Anal. Appl. 20, 4861.Google Scholar
Jauch, J. M. (1968) Foundations of Quantum Mechanics. Addison-Wesley, Reading, Mass.Google Scholar
Kastler, D. (1965) The C*-algebras of a free boson field, I. Comm. Math. Phys. 1, 1449.Google Scholar
Klauder, J. R. and Sudarshan, E. C. G. (1968) Fundamentals of Quantum Optics. W. A. Benjamin, New York.Google Scholar
Loupias, G. and Miracle-Sole, S. (1966) C*-algèbres des systèmes canoniques, I. Comm. Math. Phys. 2, 3148.Google Scholar
Mackey, G. W. (1963) Mathematical Foundations of Quantum Mechanics. W. A. Benjamin, New York.Google Scholar
Messiah, A. (1967) Quantum Mechanics, Volume 1. North Holland, Amsterdam.Google Scholar
Moyal, J. E. (1949) Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99124.Google Scholar
Von Neumann, J. (1937) Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 571578.Google Scholar
Pool, J. C. T. (1966) Mathematical aspects of the Weyl correspondence. J. Math. Phys. 7, 6676.Google Scholar
Schatten, R. (1960) Norm Ideals of Completely Continuous Operators. Springer, Berlin.Google Scholar
Urbanik, K. (1962) Joint probability distributions of observables in quantum mechanics. Studia Math. 21, 117133.Google Scholar
Varadarajan, V. S. (1968) Geometry of Quantum Theory, Volume 1. Van Nostrand, Princeton, New Jersey.Google Scholar