Skip to main content
Log in

A model of phytoplankton competition for limiting and nonlimiting nutrients: Implications for development of estuarine and nearshore management schemes

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The global increase of noxious bloom occurrences has increased the need for phytoplankton management schemes. Such schemes require the ability to predict phytoplankton succession. Equilibrium Resource Competition theory, which is popular for predicting succession in lake systems, may not be useful in more dynamic environments, such as estuaries and coastal waters. We developed a mathematical model better suited to nonsteady state conditions. Our model incorporated luxury consumption of nonlimiting nutrients and cell starvation processes into a cell-quota-based nutrient-phytoplankton scheme. Nutrient pools described included nitrogen and phosphorus. Phytoplankton groups characterized in the model were a phosphorus-specialist, a nitrogen-specialist, and an intermediate group. We emphasized competition for nutrients under conditions of continuous and pulsing nutrient supply, as well as different nutrient loading ratios. Our results suggest that delivering nutrients in a pulsing fashion produces dramatic differences in phytoplankton community composition over a given period, that is, reduction of accumulated biomass of slower growing algae. Coastal managers may be able to inhibit initiation of slow-growing noxious blooms in estuaries and coastal waters by pulsing nutrients inputs from point sources, such as sewage treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Aksnes, D. L., K. B. Ulvestad, B. M. Balino, J. Berntsen, J. K. Egge, and E. Svendsen. 1995. Ecological modelling in coastal waters: Towards predictive physical-chemical-biological simulation models. Ophelia 41:5–36.

    Google Scholar 

  • Barica, J. 1994. How to keep green algae in eutrophic lakes. Biologia Bratislava 49:611–614.

    Google Scholar 

  • Bodeanu, N. 1993. Microalgal blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions, p. 203–209. In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, New York.

    Google Scholar 

  • Brand, L. E. 1984. The salinity tolerance of forty-six marine phytoplankton species. Estuarine, Coastal, and Shelf Science 18: 543–556.

    Article  CAS  Google Scholar 

  • Buck, K. R., L. Uttal-Cooke, C. H. Pilskaln, D. L. Roelke, M. C. Villac, G. A. Fryxell, L. A. Cifuentes, and F. P. Chavez. 1992. Autoecology of Pseudonitzschia australis, a domoic acid producer from Monterey Bay, California. Marine Ecology Progress Series 84:293–302.

    Article  Google Scholar 

  • Buskey, E. J. and C. J. Hyatt. 1995. Effects of the Texas (USA) ‘brown tide’ alga on planktonic grazers. Marine Ecology Progress Series 126:285–292.

    Article  Google Scholar 

  • Davies, C. C. 1955. The Marine and Fresh-Water Plankton. Michigan State University Press, Troy, Michigan.

    Google Scholar 

  • DeBaar, H. J. W. 1994. von Liebig's Law of the Minimum and plankton ecology. Progress in Oceanography 33:347–386.

    Article  Google Scholar 

  • DeManche, J. M., J. H. C. Curl, D. W. Lundy, and P. L. Donaghay. 1979. The rapid response of the marine diatom Skeletonema costatum to changes in external and internal nutrient concentration. Marine Biology 53:323–333.

    Article  CAS  Google Scholar 

  • Dodds, W. K. 1995. Availability, uptake and regeneration of phosphate in mesocosms with varied levels of P deficiency. Hydrobiologia 297:1–9.

    Article  CAS  Google Scholar 

  • Donk, E. V. 1989. The role of fungal parasites in phytoplankton succession. p. 171–194. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Orlando, Florida.

    Google Scholar 

  • Dortch, Q., P. A. Thompson, and P. J. Harrison. 1991. Variability in nitrate uptake kinetics in Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology 27:35–39.

    Article  CAS  Google Scholar 

  • Droop, M. R. 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology 9:264–272.

    CAS  Google Scholar 

  • Droop, M. R. 1974. The nutrient status of algal cells in continuous culture. Journal of the Marine Biology Association of the United Kingdom 54:825–855.

    CAS  Google Scholar 

  • Droop, M. R. 1975. The nutrient status of algal cells in batch culture. Journal of the Marine Biology Association of the United Kingdom 55:541–555.

    Article  CAS  Google Scholar 

  • Droop, M. R. 1983. 25 years of algal growth kinetics: A personal view. Botanica Marina 26:99–112.

    Article  Google Scholar 

  • Dugdale, R. C. 1967. Nutrient limitation in the sea: Dynamics, identification, and significance. Limnology and Oceanography 12:685–695.

    Google Scholar 

  • Elrifi, I. R. and D. H. Turpin. 1985. Steady state luxury consumption and the concept of optimum nutrient ratios: A study with phosphate and nitrate limited Selenastrum minutum (Chlorophyta). Journal of Phycology 21:592–602.

    Article  CAS  Google Scholar 

  • Fasham, M. J. R., H. W. Ducklow, and S. M. McKelvie. 1990. A nitrogen based model of plankton dynamics in the oceanic mixed layer. Journal of Marine Research 48:591–639.

    CAS  Google Scholar 

  • Geesey, M. and P. A. Tester. 1993. Gymnodinium breve: Ubiquitous in the Gulf of Mexico waters? p. 251–256. In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, New York.

    Google Scholar 

  • Goldman, J. C. and P. M. Glibert. 1982. Comparitive rapid ammonium uptake by four species of marine phytoplankton. Limnology and Oceanography 27:814–827.

    CAS  Google Scholar 

  • Grover, J. P. 1991. Non-steady state dynamics of algal population growth: Experiments with two chlorophytes. Journal of Phycology 27:70–79.

    Article  Google Scholar 

  • Grover, J. P. 1992. Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition. Journal of Theoretical Biology 158:409–428.

    Article  Google Scholar 

  • Haney, J. D. and G. A. Jackson. 1996. Modeling phytoplankton growth rates. Journal of Plankton Research 18:63–85.

    Article  Google Scholar 

  • Harris, G. P. 1986. Phyoplankton Ecology. Chapman and Hall, New York.

    Google Scholar 

  • Heckey, R. E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography 33:796–822.

    Google Scholar 

  • Hendzel, L. L., R. E. Heckey, and D. L. Findlay. 1994. Recent changes of N2 fixation in lake 227 in response to reduction of the N∶P loading ratio. Canadian Journal of Fisheries and Aquatic Science 51:2247–2253.

    Article  CAS  Google Scholar 

  • Istvanovics, V., J. Padisak, K. Pettersson, and D. C. Pierson. 1994. Growth and phosphorus uptake of summer phytoplankton in lake Erken (Sweden). Journal of Plankton Research 16:1167–1196.

    Article  Google Scholar 

  • Jorgensen, S. E. 1979. Handbook of Environmental Data and Ecological Parameters. International Society for Ecological Modelling, New York.

    Google Scholar 

  • Kilham, P. and R. E. Heckey. 1988. Comparative ecology of marine and freshwater phytoplankton. Limnology and Oceanography 33:776–795.

    Google Scholar 

  • Kilham, S. S. and P. Kilham. 1984. The importance of resource supply rates in determining phytoplankton community structure, p. 7–28. In D. G. Meyers and J. R. Strickler (eds.), Trophic Interactions within Aquatic Ecosystems. American Association for the Advancement of Science, New York.

    Google Scholar 

  • Lehman, J. T. and C. D. Sandgren. 1982. Phosphorus dynamics of the procaryotic nannoplankton in a Michigan lake. Limnology and Oceanography 27:828–838.

    CAS  Google Scholar 

  • Maestrini, S. Y. and E. Graneli. 1991. Environmental conditions and ecophysiological mechanisms which led to the 1988 Chrysochromulina polylepis bloom: An hypothesis. Oceanologica Acta 14:33–51.

    Google Scholar 

  • Makarewicz, J. C. 1993. Phytoplankton biomass and species composition in Lake Erie, 1970 to 1987. Journal of Greal Lakes Research 19:258–274.

    Google Scholar 

  • Makulla, A. and U. Sommer. 1993. Relationships between resource ratios and phytoplankton species composition during spring in five north German lakes. Limnology and Oceanography 38:846–856.

    CAS  Google Scholar 

  • Monod, J. 1950. La technique de la culture continue: Theorie et applications. Annales d'Institut Pasteur, Lille 79:390–410.

    CAS  Google Scholar 

  • Paerl, H. W. 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography 33:823–847.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. 1989. Physical determinants of phytoplankton succession, p. 9–56. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Orlando, Florida

    Google Scholar 

  • Rhee, G. Y. 1974. Phosphate uptake under nitrate limitation by Scenedesmus sp. and its ecological implications. Journal of Phycology 10:470–475.

    CAS  Google Scholar 

  • Rhee, G. Y. 1978. Effects of N∶P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography 23:10–25.

    CAS  Google Scholar 

  • Rhee, G. Y. and I. J. Gotham. 1980. Optimum N∶P ratios and coexistence of planktonic algae. Journal of Phycology 16:486–489.

    Article  CAS  Google Scholar 

  • Riegman, R. 1991. Mechanisms behind eutrophication induced novel algal blooms. Netherlands Institut voor Onderzoek der Zee 9:1–52.

    Google Scholar 

  • Riegman, R., M. de Boer, L. de Senerpont-Domis. 1996. Growth of harmful marine algae in multispecies cultures. Journal of Plankton Research 18:1851–1866.

    Article  Google Scholar 

  • Riegman, R., M. de Boer, L. de Senerpont-Domis. 1996. Growth of harmful marine algae in multispecies cultures. Journal of Plankton Research 18:1851–1866.

    Article  Google Scholar 

  • Riegman, R. and B. Kuipers. 1994. Resource competition and selective grazing of plankton in a multispecies pelagic food web model. Marine Ecology 15:153–164.

    Article  Google Scholar 

  • Riegman, R. and L. R. Mur. 1984. Regulation of phosphate uptake kinetics in Oscillatoria agardhii. Archives of Microbiology 139:28–32.

    Article  CAS  Google Scholar 

  • Riegman, R., A. A. M. Noordeloos, and G. C. Cadee. 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Marine Biology 112:479–484.

    Article  Google Scholar 

  • Riegman, R., A. Rowe, A. A. M. Noordeloos, and G. C. Cadee. 1993. Evidence for eutrophication induced Phaeocystis sp. blooms in the Marsdiep area (The Netherlands), p. 799–805. In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton blooms in the Sea, Elsevier, New York.

    Google Scholar 

  • Roelke, D. L. 1997. Managing phytoplankton community composition: Can we do it? Dissertation, Oceanography Department, Texas A&M University, College Station, Texas.

    Google Scholar 

  • Roelke, D. L., P. M. Eldridge, and L. A. Cifuentes. 1997. Nutrient and phytoplankton dynamics in a sewage impacted Gulf Coast estuary: A field test of the PEG-model and Equilibrium Resource Competition theory. Estuaries 20:725–742.

    Article  CAS  Google Scholar 

  • Schindler, D. W. 1985. The coupling of elemental cycles by organisms: Evidence from whole lake chemical perturbations, p. 225–250. In W. Stum (ed.), Chemical Processes in Lakes. Wiley and Sons, New York.

    Google Scholar 

  • Sciandra, A. 1991. Coupling and uncoupling between nitrate uptake and growth rate in Prorocentrum minimum (Dinophyceae) under different frequencies of pulsed nitrate supply. Marine Ecology Progress Series 72:261–269.

    Article  Google Scholar 

  • Seliger, H. H. 1993. Red tide mechanisms: Spatial and temporal scales, p. 819–824. In T.J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, New York.

    Google Scholar 

  • Smayda, T. J. 1978. From phytoplankters to biomass, p. 273–279. In A. Sournia (ed.), Phytoplankton Manual. United Nations Educational, Scientific and Cultural Organization, Paris.

    Google Scholar 

  • Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic, p. 29–40. In E. Graneli (ed.), Toxic Marine Phytoplankton. Elsevier, New York.

    Google Scholar 

  • Smayda, T. J. and P. Fofonoff. 1989. An extraordinary, noxious brown tide in Narragansett Bay. II. Inimical effects, p. 133–136. In Okaichi (ed.), Red Tides: Biology, Environmental Science, and Toxicology. Elsevier, New York.

    Google Scholar 

  • Smith, J. C., P. Odense, R. Angus, S. S. Bates, C. J. Bird, P. Cormier, A. S. W. de Freitas, C. Leger, D. O'Neil, K. Pauley, and J. Worms. 1990. Variation in domoic acid levels in Nitzschia species: Implications for monitoring programs. Bulletin of the Aquaculture Association of Canada 90(4):27–31.

    Google Scholar 

  • Smith, V. H. 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnology and Oceanography 27:1101–1112.

    CAS  Google Scholar 

  • Sommer, U. 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Archiv fur Hydrobiologie 96:399–416.

    Google Scholar 

  • Sommer, U. 1989a. The role of competition for resources in phytoplankton succession, p. 57–106. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Orlando, Florida.

    Google Scholar 

  • Sommer, U. 1989b. Toward a Darwinian ecology of plankton, p. 1–8. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Orlando, Florida.

    Google Scholar 

  • Sommer, U. 1991a. The application of the Droop-model of nutrient limitation to natural phytoplankton. Verhandlungen der Internationalen Vereinigung feur Theoretische und Angewandte Limnologie 24:791–794.

    CAS  Google Scholar 

  • Sommer, U. 1991b. A comparison of the Droop and Monod models of nutrient limited growth applied to natural populations of phytoplankton. Functional Ecology 5:535–544.

    Article  Google Scholar 

  • Sommer, U. 1993. Phytoplankton competition in PluBsee: A field test of the resource ratio hypothesis. Limnology and Oceanography. 38:83–845.

    Article  Google Scholar 

  • Sommer, U. 1994. Are marine diatoms favoured by high Si∶N ratios? Marine Ecology Progress Series 115:309–315.

    Article  CAS  Google Scholar 

  • Sommer, U., U. Gaedke, and A. Schweizer. 1993. The first decade of oligotrophication of Lake Constance. Oecologia 93: 276–284.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert, and A. Duncan. 1986. The PEG-model of seasonal succession of plankton events in fresh waters. Archiv fur Hydrobiologie 106:326–330.

    Google Scholar 

  • Steidinger, K. A. and D. G. Baden. 1984. Toxic marine dinoflagellates, p. 201–261. In D. L. Spector (ed.), Dinoflagellates. Academic Press, Inc., New York.

    Google Scholar 

  • Sterner, R. W. 1989. The role of grazers in phytoplankton succession, p. 107–170. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Orlando, Florida.

    Google Scholar 

  • The MathWorks, Inc. 1997. Matlab 5.0 The MathWorks, Inc., Natick, Massachsetts.

    Google Scholar 

  • Thomas, W. H. and C. H. Gibson. 1990. Effects of small scale turbulence on microalgae. Journal of Applied Phycology 2:71–77.

    Article  Google Scholar 

  • Tilman, D. 1977. Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 58: 338–348.

    Article  CAS  Google Scholar 

  • Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press. Princeton, New Jersey.

    Google Scholar 

  • Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham, and F. A. Johnson. 1986. Green, bluegreen and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Archiv fur Hydrobiologie 106:473–485.

    Google Scholar 

  • Tomas, C. R. (ed.) 1996. Identifying Marine Diatoms and Dinoflagellates. Academic Press, Inc. New York.

    Google Scholar 

  • Van den Berg, A. J., H. Ridderinkhof, R. Riegman, P. Ruardij, and H. Lenhart. 1996. Influence of variability in water transport on phytoplankton biomass and composition in the southern North Sea: A modelling approach (FYFY). Continental Shelf Research 16:907–931.

    Article  Google Scholar 

  • Villac, M. C., D. L. Roelke, F. P. Chavez, L. A. Cifuentes, and G. A. Fryxell. 1993a. Pseudonitzschia australis Frenguelli and related species from the west coast of the USA: Occurrence and domoic acid production. Journal of Shellfish Research 12: 457–465.

    Google Scholar 

  • Villac, M. C., D. L. Roelke, T. A. Villareal, and G. A. Fryxell. 1993b. Comparison of two domoic acid producing diatoms: A review. Hydrobiologia 269/270:213–224.

    Article  Google Scholar 

  • White, A. W. 1976. Growth inhibition caused by turbulence in the toxic marine dinoflagellate Gonyaulax excavata. Journal of the Fisheries Research Board of Canada 33:2598–2602.

    Google Scholar 

  • Zevenboom, W. and L. R. Mur. 1979. Influence of growth rate on short term and steady state nitrate uptake by nitrate-limited Oscillatoria agardhii. Federation of European Micorbiological Societies Microbiology Letters 6:209–212.

    Article  CAS  Google Scholar 

  • Zonneveld, C. 1996. Modelling the kinetics of non-limiting nutrients in microalgae. Journal of Marine Systems 9:121–136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Roelke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelke, D.L., Eldridge, P.M. & Cifuentes, L.A. A model of phytoplankton competition for limiting and nonlimiting nutrients: Implications for development of estuarine and nearshore management schemes. Estuaries 22, 92–104 (1999). https://doi.org/10.2307/1352930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352930

Keywords

Navigation