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Abstract

In order to avoid being detected, most professional intruders have exploited stepping-stones to make
a long connection chain to launch their attacks indirectly, other than directly, since 1990s. The longer
a connection chain, the harder to capture the intruders and detect their intrusions. Most existing ap-
proaches suffer from intruders’ session manipulation, such as chaff perturbation. In this paper, we
propose a novel algorithm by modelling network traffic and exploiting encrypted packets to detect
stepping-stone intrusions. The experimental results show that the proposed algorithm cannot only
detect stepping-stone intrusions, but also resist intruders’ single-side chaff perturbation up to 70%
in the context of a local area network, as well as 80% in the context of the Internet. The algorithm
presents much stronger performance in resisting intruders’ both-side chaff perturbation. Our study
shows if the incoming and outgoing connections of a sensor host are both manipulated, the algorithm
can resist intruders’ chaff rate up to 140%, and even more, regardless of a local area network or the
Internet environment.

Keywords: Stepping-stone Intrusion, modelling network traffic, encrypted packet, Intrusion De-
tection

1 Introduction

1.1 Overview of Stepping-stone Intrusion and its Detection

Stepping-stones [2] have been widely used by intruders to launch their attacks since early 1990s. The
primary reason of exploiting stepping-stones to launch attacks is to protect intruders themselves from
capture. Since most intruders tend to establish a long connection chain by spanning multiple stepping-
stones to conduct their attacks, it is extremely challenging to capture such type of intruders. Detecting
such kind of attacks is, sometimes, difficult. The attacks launched by exploiting stepping-stones are
called stepping-stone intrusion (SSI). The way to detect stepping-stone intrusions is called stepping-
stones intrusion detection (SSID).

The basic idea of SSID is to determine if a computer host is used as a stepping-stone. Such a stepping-
stone is normally called a sensor. A sensor is actually a host where we can capture network traffic and
run a detection program. Since 1990s, there have been many different algorithms developed to detect
stepping-stone intrusions. These algorithms can be classified as two categories: host-based stepping-
stone intrusion detection (HSSID), and connection-based stepping-stone intrusion detection (CSSID).
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The idea of HSSID is to collect the network packets coming to a host which are called incoming traffic,
and the packets leaving from the host which are called outgoing traffic, then compare the two traffics
to see if there exists a relayed connection pair. Unlike the HSSID, CSSID is to estimate the length of a
connection chain from a sensor to the victim host which is the end host of the connection chain. If the
length is more than three connections which indicate more than three stepping-stones are used to access
the victim host, it is highly suspicious that the sensor is used as a stepping-stone.

1.2 Related Work and Its Limitations

Some typical approaches developed for SSID belonging to HSSID include packet content-thumbprint
[3]], packet time-thumbprint [2], connection deviation [4]], packet number difference [5]], connection wa-
termark [6], [7], [8l], and detect bounded memory chaff [9]. The packet content-thumbprint to detect
stepping-stone intrusion was proposed by S. Staniford-Chen, and L. T. Heberlein [3] in 1995. They de-
signed a thumbprint approach by hashing the contents of the packets captured in the connection of a host
to describe the behavior of the network traffic. By comparing the thumbprint of an incoming connection
with the thumbprint of an outgoing connection of a host, it is trivial to decide if the host is used as a
stepping-stone. Packet content-thumbprint approach is easy to be circumvented by an encrypted connec-
tion. Packet time thumbprint can overcome this issue to detect SSI via an encrypted session. For each
TCP/IP packet captured, we can record its timestamp. If we can sniff a certain amount of packets, we
could obtain a sequence in which each element indicates the timestamp of a packet captured. It is ratio-
nal to convert the timestamp sequence to a time gap sequence by computing the timestamp difference
between each packet and its subsequent one. So in this way, we get a timestamp gap sequence which is
called time-thumbprint. Comparing the time-thumbprint from the incoming connections with the ones
from the outgoing connections can help us determine if the host is used as a stepping-stone. The higher
the similarity of two time-thumbprints, the higher the probability that a host is used as a stepping-stone.
Yoda and Etoh [4] proposed a connection deviation-based approach to detect stepping-stone intrusion.
This method is based on the observation that the deviation for two un-relayed connections is large enough
to be distinguished from the deviation of those connections within the same connection chain.

A. Blum, et al. [5] proposed a packet number difference-based (PND-based) approach that detects
stepping-stones by checking the difference of the number of Send packet between two connections. This
method is based on the idea that if two connections are relayed, the difference between the numbers of
packets from the two connections, respectively, is bounded. This method can resist intruders’ evasions,
such as time jittering and chaff perturbation. D. L. Donoho, et al. [10] showed for the first time that
there are a theoretical limit on the ability of attackers to disguise their traffics using evasions during a
long interactive session. The major problem with the PND-based approach is that the upper bound on
the number of packets required to monitor is large, while the lower bound on the amount of chaff an
attacker needs to evade the detection is small. This fact makes Blum’s method very weak in resisting to
intruders’ chaff evasion. X. Wang, et al. [|6], [7]], [8] conceived an approach using watermarks to decide
relayed connections. Injecting a watermark to a TCP/IP session may result in lots of computations, thus
making the approach inefficient. Another issue is that the injected watermarks may be manipulated by
intruders. T. He and L. Tong proposed an algorithm DBDC (DETECT-BOUNDED-MEMORY-CHAFF)
[9] for SSID with bounded memory or bounded delay perturbation. It is stated that DBDC can deal with
chaff evasion and tolerate a number of chaff packets proportional to the size of the attacking traffic. Their
study shows that an intruder needs to insert at least n/(1+AA) chaff packets in n packets to evade DBDC
detection if the packets delay is bounded by A. This tells us the chaff-rate of DBDC is 1/(1+AA), where
A is a parameter of a Poisson distribution which indicates the expected number of occurrences during a
given time interval. It is obvious that a smaller A and A can make DBDC tolerate more chaff, but could
also make DBDC suffer from a high false alarm probability for a wide range of normal traffic.
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Some typical approaches belonging to CSSID include packet round-trip time (RTT) approach pro-
posed by K.H. Yung in 2002 [[L1], step-function approach [[12], and clustering-partitioning algorithm [[13]]
proposed by J. Yang, et al. in 2004 and 2007 respectively. In Yung’s method, two RTTs are computed:
one is the RTT from a sensor to the victim host which is called RTTe; another one is the RTT between
the sensor and its adjacent host (next immediate neighbor in the connection chain) which is denoted as
RTTa. The ratio between RTTa and RTTe can be used to estimate the length of a downstream connection
chain. The step-function approach [12]] takes a different way from Yung’s method to estimate the length
of a connection chain. It collects and matches all the Send and Echo packets to compute the RTTs for
all Send packets. The RTTs could form different Steps since the RTTs belonging to different stages of a
connection chain would go to different clusters with each of them representing one step. Simply count-
ing the number of steps can tell us how many hosts are used as stepping-stones. Clustering-partitioning
data mining approach [13]] is a method to detect SSI by estimating the length of a connection chain with-
out matching TCP/IP packets. Matching TCP/IP packets, in some cases, are infeasible. This approach
makes use of the distribution of RTTs to find the RTTs using data mining approach. On the contrary, the
computed RTTs can also provide us the packet-matching results.

In 2010, Y. Zhang, etc. proposed a context-based TCP/IP packets matching approach to detect
stepping-stone intrusion [14]. It is claimed that the approach can resist intruders’ manipulation. A
dynamic programming technique was proposed to detect multi-hop stepping-stone pairs by Y. Kuo, etc.
in 2010 [15)]. However, the dynamic approach cannot resist intruders’ chaff perturbation attack. Y.
Sheng, etc. developed a data mining approach to mine network traffic to detect stepping-stone intru-
sion efficiently [16] in 2012. The issue that if the approach can resist intruders’ chaff manipulation was
not discussed in the paper. In 2015, J. Yang and Y. Zhang proposed a random-walk approach to detect
stepping-stone intrusion [[17] which claims the algorithm can resist intruders’ chaff perturbation attack
to around 20%. In 2016, J. Yang proposed an approach using packet cross-matching and random walk
to detect stepping-stone intrusion [[18]]. This method can resist intruders’ chaff attack up to 40%. L.
Wang, etc. designed an algorithm using k-Means clustering to mine network traffic to detect stepping-
stone intrusion [[19] in 2021. This approach does not perform well in terms of resisting intruders’ session
manipulation.

1.3 Summary of the Main Contribution and the Paper Layout

The common issue of the above approaches to detect stepping-stone intrusion is that their capabilities
to resist intruders’ manipulation are more or less limited. A preliminary result via identifying encrypted
packets to detect stepping-stone intrusion was published in a conference proceeding [20]. The main
contribution of the published preliminary research is to explore the possibility of using encrypted packets
to detect stepping-stone. In this paper, in order to improve the resistance performance to intruders’ chaff
manipulation, we propose a novel approach by making use of the features of encrypted packets. The
main contribution of this paper is to justify the capability of the proposed algorithm to resist intruders’
chaff manipulation. After analysing encrypted packets captured in an OpenSSH session, we observed
that the contents of a packet at application layer are encrypted. The fields of a packet header in other
layers are not encrypted. The most important observation we obtained is that the length of a single
encrypted character in transport layer keeps the same no matter what the character is. Some header fields
remain the same between two OpenSSH connections if the two connections are relayed which means
the host is used as a stepping-stone. The length of an encrypted packet can be used to detect stepping-
stone since it remains unchanged regardless of the encryption key and its content. But here, we assume
both sides use the same encryption algorithm. If we combine both the header fields and the length of an
encrypted packet, we can not only detect stepping-stone intrusion, but also resist intruders’ manipulation.
Our experimental results in both a local area network and the Internet show this approach can improve

4
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resistance performance to intruders’ manipulation to a new high level.

This is paper is organized as the following. Section 2 introduces the preliminaries used in other
sections. Section 3 presents how to understand an encrypted packet. In Section 4, we propose a way
to model network traffic. In Section 5, we design an algorithm to detect stepping-stone intrusion by
employing encrypted packets, as well as a parser to parse network traffic. In Section 6, we present
experimental results and its analysis. The whole paper is concluded and the future work is discussed in
Section 7.

2 Preliminaries

2.1 Downstream and Upstream Connections

As we have mentioned, in order to protect themselves from capture, most professional intruders launch
their attacks via a long interactive session that is also called a long connection chain. A long connection
chain is defined as a TCP session that spans at least three computer hosts. The reason using three
computer hosts here is that some legal applications may use one or two hosts as stepping-stones. But
we rarely see a legal application using three or more computer hosts as stepping-stones. An interactive
TCP session can be made by using many different tools, such as Telnet, rlogin, OpenSSH, and so on.
OpenSSH is one popular tool used to access a remote host. It is also widely used by intruders to establish
a long connection chain and launch their attacks. In Figure 1, it shows a long connection chain from Host
0 to Host N. An attacker can establish a connection chain starting from Host 0, then connecting to Host
1, Host 2,..., Host i-1, Host i, Host i+1,..., until Host N. Here, Host O is controlled by an attacker; Host
1 to Host N-1 are the stepping-stones used by the attacker; Host N is assumed a victim host. If Host i is
used as a sensor, the chain from Host 0 to Host i is defined as an upstream connection, and the one from
Host i to Host N is called a downstream connection.

Upstream Downstream
+— e

Host Host

Host Host Host
0 g i

P TP N

Y

Incoming Outgoing

Figure 1: A long connection chain

2.2 Send and Echo Packets

As long as a long connection chain is established, just as shown in Figure 1, an intruder can access Host
N from Host 0 via the chain. Whatever a keystroke typed at Host O by the intruder, the packets will be
forwarded to Host 1 from Host 0, then to Host 2, Host 3, until to Host N. Each keystroke is encapsulated
into a request packet. Each request packet can go all the way down to Host N from Host O along the
connection chain. The request packet is defined as a Send packet. When a Send packet arrives at Host N,
it will be received, de-capsulated, and processed. A response packet corresponding to each Send packet
can be sent back to Host O from Host N along the same connection chain, but in a reverse direction. This
response is called an Echo packet. One Send packet can normally incur one Echo packet at Host N, but
sometimes may trigger multiple Echo packets. For example, if an intruder types a UNIX command 1s”
at Host 0, two Send packets representing ”1” and ’s” respectively, will be forwarded to Host N along the
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connection chain. Two Echo packets corresponding to ’1” and ’s”, respectively, will be incurred at Host
N, and come back to Host 0. However, as long as an “Enter” is entered at Host O, the third Send packet
is forwarded to Host N, and this will incur multiple Echo packets at Host N depending on the execution
results of the command “’1s” at Host N.

2.3 An Encrypted Packet and its Header Fields

SSL is a layer in between the application and the transport layers. A packet in the application layer
including its payload and header fields can be encrypted in SSL layer, then pass to the transport layer.
At the transport layer and the layers below, headers can be added to an encrypted packet, but the header
fields in the transport layer, network layer, data link layer are not encrypted. A packet captured in
different layers can present different headers. Both the existing packet sniffing tools, such as Wireshark
and TCPdump, and self-developed packet capturing programs using WinPcap (MS Windows related
Operating System (OS)) or Libpcap (Unix/Linux related OS) can sniff packets in the transport layer and
the layers below. We do not consider any packet header fields in the application layer for our detection
algorithm since they are encrypted in SSL. The header fields in transport, network, and datalink layers,
respectively, are in our consideration to design an algorithm to detect a stepping-stone intrusion. In the
transport layer, some header fields can be used to determine a relayed session pair (will be defined later)
since they remain unchanged from an incoming connection to an outgoing connection of the same host.
These fields include destination port, source port, and TCP flags. Sequence number, acknowledgement
number, offset, window size, checksum, urgent pointer and options cannot be used to detect a stepping-
stone intrusion since they are packet/session oriented. In the network layer, none of the header fields of a
packet can be considered since they remain either the same or packet/session oriented except the source
IP address, destination IP address, and Total Length fields. Similarly, in the data link layer, even though
there are many header fields, such as destination MAC address, source MAC address, protocol type, or
CRC code, none of them can be considered in our algorithm design.

3 Understanding Encrypted Packets

In order to design an algorithm and make a program to detect stepping-stone intrusion by inspecting
each packet captured, it is necessary to understand each field of the header in a packet and know how
to read the header information from an encrypted packet. In this section, we use a captured packet as
an example to illustrate what each binary number in a header exactly means. Before the discussion, it
is worth to mention that, when capturing packets using TCPdump, a network interface must be speci-
fied. Otherwise, the destination and source MAC addresses would not be obtained because TCPdump
captures packets in ”Cooked” mode which has a different type of frame header from the standard. In
this experiment, we captured a packet from a computer host with MAC address 00:0c:29:3d:e7:e0 and IP
address 192.168.1.115. The packet was sent from a computer host with MAC address dc:a6:32:98:0b:16
and IP address 192.168.1.103 via an ssh connection. In Figure 2, it shows the captured packet in a binary
format. The first six bytes ’000c293de7e(0’ from 0x0000 to 0x0005 represent the destination MAC ad-
dress of the host used to capture the packet. The second six bytes ’dca632980b16’ represent the source
MAC address of the host from which the packets were sent out. The next two bytes 0800 represent
Ethernet type: Ethernet Type II. The first number of the second last byte 4" indicates the IP version,
and the second number ”5” represents the network IP header length=5%32 bits=160 bits = 20 bytes. The
last byte ”10” (in binary bits: 00010000) represent the Type of Service (ToS) with its first three bits
”000” known as precedence bits, the next 4 bits (1000) indicate the ToS of "Minimize Delay”, and the
last bit is left unused. The first two bytes of the second row starting from 0x0010 ”0058” (Hex number)
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0x0000; 000c 293d e7el dcab 3298 0b16 0800 4510
0x0010: 0058 6488 4000 I 5108 c028 0167 c0ad
0x0020: 0173 c3ce 0016 d2e2 €709 BogecEac SOl
0x0030: 01f5 edf4 DODO 0101 080a 346e 1eab 9a5d

0x0040: 4cb2 0513 c261 547 2571 96¢c 9ed7 88ad

0x0050; d637 912c 5302 3151 ¢750 65e3 85fb 8b3c

0x0060: SEI0GBOT2TE

Figure 2: A captured packet in a binary number format

stand for the total length of the IP packet, which is 88 bytes in decimal number system. So the bytes
from 0x000E (byte *45’) to 0x0065 (byte *73’) form the whole IP packet include the IP header and the
payload. Its first 20 bytes from 0x000E *45’ to 0x0021 *73” denote the IP header fields. The second two
bytes *648c’ represent the identification number of the IP packet. If the packet is fragmented to smaller
parts during the transmission, all the fragments share the same identification number. The first byte of
the third two bytes *40° (0100 0000) is the fragmentation flag and offset byte. The second bit *1’ is set to
represent don’t fragment’, the third bit 0’ shows no more fragment since the packet is not fragmented.
The second byte of the third two bytes 00’ is the fragmentation offset in case of a fragmented datagram.
The first byte of the fourth two bytes 40’ is the TTL field (Time To Live) indicating the number of the
hops the packet is allowed to pass through in the Internet. The second byte of the fourth two bytes *06’°
represents the transport layer protocol "TCP” is used. The next two bytes 51d9’ are the header check-
sum field. The next four bytes *’c0a80167’ represent the source IP address 192.168.1.103, and following
four bytes "c0a80173 are the destination IP address 192.168.1.115. The rest part starting from 0x0022
’c3’ to the last byte 0x0065 73’ is the TCP packet, which is also the payload of the IP packet. The first
two bytes 'c3ce’ are the source port number, and the second two bytes 0016’ are the destination port
number 22 in decimal number system, which is exactly the known ssh server port. The next four bytes
”d2e2e709’ show the sequence number, and the following four bytes 6086c8ac” represent the acknowl-
edgement number. The first 4 bits of the next byte 80 (1000 0000) show the TCP header length and the
remaining 4 bits are reserved. The TCP header length expresses a 32-bit word, which must be multiplied
by 4 to calculate the total byte value. Therefore, we can get 8%4=32 bytes, the TCP header length. The
last byte *18” (Hex number, 00011000 in binary) is the TCP flag bits which represent "CWR, ECE, UR,
ACK, PSH, RST, SYN and FIN” with each bit in order. The fourth and fifth bits are set to show this is
a packet carrying data, as well as acknowledging the previously received packets. The first two bytes of
the row 0x0030 *01f5’ are the window size field. The second two bytes ’edf4’ are the TCP checksum
field, and the third two bytes 0000’ represent the Urgent pointer. This field is O since the flag Urgent bit
is not set. We all know that the minimum TCP header length is 20 bytes. Therefore, we can calculate
the TCP options length for this packet, 32-20 = 12 bytes. The TCP packet payload is 12 bytes after the
urgent pointer *0000’, which is from the byte 0x0034 to the byte 0x0035. The bytes 0101 080a 34e6
leab 9a5d 4cb2’ are the TCP options. The payload bytes are from 0x0042 byte 05’ to 0x0065 byte *73’.

4 Modelling Network Traffic

Computer network communication is a complex process, which is dominated by TCP/IP protocols. Dif-
ferent protocols may result in different type of packets. In the TCP/IP protocol suite, there are more than
100 different type of protocols. To serve the purpose of SSID, we may not need all different types of
TCP/IP packets. In this section, we will examine a computer network traffic, and build a model that fits
to the goal of SSID. Before modelling a network traffic, we discuss the process to encrypt a packet in a
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computer network communication.

4.1 The Process of Packet Encryption

OpenSSH is widely used by regular users to access and operate a server remotely. Most intruders also
use this tool to launch their attacks on a remote server. The difference between them is that a regular
user may access a remote server directly. However, a malicious user may indirectly access a remote
server via a long connection chain. One major advantage to use OpenSSH is that it can provide a secured
network communication. Each packet sent from the first host (an intruder host) of a connection chain
to the last host (a victim host) is encrypted with different keys in different connections. In order to
understand the proposed algorithm to detect stepping-stone intrusion, we first introduce how to encrypt
and deliver a packet in a TCP session including multiple connections. What shown in Figure 1 is a
session chain established using OpenSSH, which is composed of N connections from Host 0 to Host N
with each connection having its own encryption key. We assume Host 0 is operated by an intruder, and
Host N is a victim. When a connection is established, an encryption key is selected. For example, when
the intruder makes a connection from Host O to Host 1, the system asks the user to input a password
for authentication, and if it is the first time connecting to Host 1 from Host 0, the system also reminds
the user to click ”Yes” to accept a public key which is for a session key distribution. As long as the
user connects to Host 1 successfully, an encryption key is generated and distributed from Host 0 to Host
1. Apparently, different connections have different encryption keys. For convenience, we assume the
encryption keys for the connections Host O to Host 1, Host 1 to Host 2, ..., Host i-1 to Host i, Host i
to Host i+1, ..., Host N-1 to Host N are EnpKO0,1, EnpK1,2, ..., EnpKi-1,i , EnpKi, i+1,..., EnpKN-1,
N, respectively. When an attack is launched, each packet is sent from Host 0 to Host 1 encrypted with
EnpKO,1, from Host 1 to Host 2 encrypted with EnpK1,2, ..., from Host N-1 to Host N encrypted with
EnpKN-1,N. In each stepping-stone host, a packet is received from its incoming connection. Then the
packet is decrypted and re-encrypted, and sent out through its outgoing connection.

We cannot obtain the content of every packet at each stepping-stone due to the secured design of
OpenSSH. OpenSSH is an application layer program, which provides a secured communication over
an unsecured network channel. The secured SSL layer lays in between application layer and transport
layer. A packet in the application layer can be encrypted first, then passed to the transport layer and be
encapsulated into a segment. Each segment contains a transport layer header and payload, which is the
encrypted application layer message. A transport layer segment can be passed to network layer and be
encapsulated into a datagram, which contains a network layer header, and payload, which is the transport
layer segment. Similarly, a network-layer datagram can be the payload of a data-link layer frame. We
use a captured packet to show the three different headers and the encrypted payload. Figure 3 shows the
header and payload information of a captured packet from a computer running a Linux OS. We can see
the IP addresses, port numbers, TCP flags, sequence and acknowledgement numbers, windows buffer
size and the packet length in transport layer. In Figure3, it clearly shows the data-link header (yellow),
IP header (red), and TCP header (green). The application layer header and the packet contents are not
readable because they are all encrypted.

4.2 The Length of an Encrypted Packet

We are interested in the length of a TCP packet since this length remains the same under the same
encryption algorithm regardless of the values of the encryption keys and the contents of the packet. We
found that for a certain encryption algorithm used in OpenSSH, the length of an encrypted string depends
on not the content of the string, but the number of the characters in the string. We believe this observation
is significant because this feature can be used to detect stepping-stone intrusion. Before we go further
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13:00:42.609234 1P 192.168.205.254.39900> 192.168.205.219.22: Flags [P.], s8q, 936:996, ack 945, win 610,
options[nop, nop. TS yal 241867 gcr 2790441, length 60

0x0000: 00000001 0006 080027e6 701b 0000 0800

0x0010:

0x0020:

0x0030: 0101 080a0003 b0Ocb

0x0040:0004 4204 469ff81e 2cd8 66e8 f91c¢ 03fc

0x0050: celf 7665 02a4 c420 leda 6f7ce672 2510

0x0060: 44al fe7a 20bad4c4 4019 01cc ¢392 9687

0x0070: 1e29 f499 f1{8 7908 122e 441¢ 5871 f71d

Figure 3: A captured packet via TCPdump

to discuss our novel detection algorithm, we explain the length of an encrypted packet in detail. For
the convenience of our discussion, we use a simplified model of a stepping-stone intrusion as shown
in Figure 4 where the stepping-stone host has two connections: the incoming connection C;, and the
outgoing connection C,y. To verify the idea, we run OpenSSH to connect to the Stepping-stone host
from Host 0 and connect out to Host 1 to make two connections as shown in Figure 4. We typed some
characters to activate some packets at Host 0. The packets can be delivered to Stepping-stone via Cj,
and forwarded to Host 1 via C,,,. An encryption algorithm is used in the two connections in which
obviously encryption keys are different. All the three hosts run Ubuntu OS. We use TCPdump to capture
all the packets coming from Host O at Stepping-stone, and also all the packets going to Host 1 from
Stepping-stone.

Our goal is to check the lengths of the packets captured at the incoming and outgoing connections of
Stepping-stone, respectively. In order to make grouped characters into one packet, we use copy and paste.
We typed 26 characters separately, as well as grouped characters, such as ”ab”, abc”, “abed”, and so on.
The IP address, port number, flags, timestamp, and the total length of each packet are recorded. Table 1
shows the header fields of the packets captured at the incoming and outgoing connections of Stepping-
stone, respectively. From the header information of the packets captured, the IP addresses of Host 0,
Stepping-stone, and Host 1 are 192.168.205.254, 192.168.205.219, and 192.168.205.236, respectively.
Host 0 uses a port number 34652 sending packets to the SSH server in Stepping-stone. Stepping-stone
uses a port number 55824 forwarding packets received from Host O to the SSH server of Host 1. If you
check the timestamps of the packets from the incoming and outgoing connections C;, and C,,;, you can
observe a little bit time lag.

Stepping- »  Host 1
stone C

out

A 4

Host 0

in

Figure 4: A Simplified model of a stepping-stone intrusion

From the results in Table 1, we conclude the following. 1) Different single characters have the same
length of its encrypted packet. 2) Grouped characters (string) may have different lengths for its encrypted
packet depending on the length of the string. 3) The same number of characters result in the same length
of encrypted packet at the incoming and outgoing connections, respectively. Single characters °x’, ’y’,
and ’a’ have the same length of encrypted packet 36. When the length of the string is in between 3 and

10, the length of the encrypted string is 44. It is easy to see from Table 1 that the encrypted string with
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the number of characters in between 11 and 18 has length of 52. When we increased the length of the
string to be 19, the length of the encrypted packet becomes 60. We did not show more characters of a
string in Table 1, but we know that the length is increased as long as the number of the characters in a

string reach a certain degree.

Table 1: Captured packets comparison between the incoming and outgoing connections

Character(s) Incoming connection Outgoing connection
X 14:27:10.936370 IP | 14:27:10.936712 1P
192.168.205.254.34652 > | 192.168.205.219.55824 >
192.168.205.219.22: Flags [P.], length 36 | 192.168.205.236.22: Flags [P.], length 36
y 14:27:18.461314 IP | 14:27:18.461411 1P
192.168.205.254.34652 > | 192.168.205.219.55824 >
192.168.205.219.22: Flags [P.], length 36 | 192.168.205.236.22: Flags [P.], length 36
a 12:57:52.262636 IP | 12:57:52.262809 IP
192.168.205.254.39900 > | 192.168.205.219.58534 >
192.168.205.219.22: Flags [P.], length 36 | 192.168.205.236.22: Flags [P.], length 36
abc 12:58:15.767057 IP | 12:58:15.767348 1P
192.168.205.254.39900 > | 192.168.205.219.58534 >
192.168.205.219.22: Flags [P.], length 44 | 192.168.205.236.22: Flags [P.], length 44
abcdefghijk 12:59:00.740578 IP | 12:59:00.740870 1P
192.168.205.254.39900 > | 192.168.205.219.58534 >
192.168.205.219.22: Flags [P.], length 52 | 192.168.205.236.22: Flags [P.], length 52
abcdefghijklmnopqrs | 13:00:37.931633 IP | 13:00:37.932061 1P
192.168.205.254.39900 > | 192.168.205.219.58534 >
192.168.205.219.22: Flags [P.], length 60 | 192.168.205.236.22: Flags [P.], length 60

4.3 Packet Stream

From either the incoming connection or the outgoing connection of a sensor host, packets can be captured
and put into a queue, which is called a packet stream. The Send/Echo packets can be identified and put
into a queue based on their timestamp order. The packet queue obtained from the incoming connection of
a sensor is called an incoming packet stream. Similarly, the one obtained from the outgoing connection
of a sensor is called an outgoing packet stream. In each incoming/outgoing packet stream, it contains
Send and Echo packets only. If we put all the Send packets into a queue, the queue can be called a Send
stream. A queue containing Echo packets only is called an Echo stream.

4.4 Relayed Connections

As shown in Figure 1, Host i is used as a stepping-stone of the connection chain. Detection program
runs at Host i, which is called a sensor. The connection from Host i-1 to Host i is called an incoming
connection of Host i. Similarly, the connection from Host i to Host i+1 is called an outgoing connection
of Host i. If an incoming connection and an outgoing connection of Host i belong to the same TCP
connection session, they are called relayed connections/sessions. Detecting if a host is used as a stepping-
stone is actually to find if there exist a relayed session pair. We already knew that the way to determine a
relayed session pair is to see if the same packet appears on both the incoming and outgoing connections
of a host. For an encrypted session, the content of a packet cannot be observed. So comparing the header
fields of the encrypted packets from incoming and outgoing connections respectively can be a feasible
way to find a relayed session pair.

10
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5 Algorithm Design for SSID

As long as network traffic is modelled and the traffic data are collected, two packet streams including
send and echo packets can be obtained. Each packet stream can be handled as a timestamp sequence. The
statement to detect stepping-stone intrusion becomes a timestamp sequence comparison. In this section,
we will present our algorithm to detect stepping-stone intrusion, as well as the approach to compare two
timestamp sequences.

5.1 The Detection Algorithm

The way to determine if a host is used as a stepping-stone is to check if there is a relayed connection
pair passing through the host. If we monitor an enterprise level server, we can observe tons of incoming
connections, as well as a bunch of outgoing connections. Most servers provide services to their clients.
This means, in most cases, the connections entering into an enterprise server are not necessary to connect
out of the server. If we find an ssh session connecting into a server, as well as connecting out from the
server, it is highly suspicious that the server is used as a stepping-stone. So stepping-stone intrusion
detection needs to compare all the incoming connections of a server with all the outgoing connections of
the server to determine if there exists any relayed connection pairs. In this paper, we focus on a simplified
model as shown in Figure 5 in which the server has only one incoming connection and one outgoing
connection. Our goal is to compare the two connections to see if the host H1 is used as a stepping-stone.
As shown in Figure 5, the host H1 has an incoming connection Cj, and an outgoing connection C,,;.
We run TCPdump at H1 to capture the packets from the connections C;, and C,,, respectively. When
capturing packets, it is important to be aware that the source IP and destination IP addresses cannot be
used in TCPdump filter because before we start capturing, we actually do not know which host connects
to H1 and to which host H1 will connect. We also do not know the source port number used to connect to
H1, as well as the port number H1 uses to connect out to a remote host. However, we can use destination
port number 22 since they are all ssh connections, as well as the IP address of HI which can be used for
packet capturing from the incoming connection, as well as the outgoing connection.

> HI ’

Figure 5: A Simplified Model of Stepping-stone with only one incoming connection and only outgoing
connection

When we only use the length of captured packets to determine a stepping-stone, it is possible to
introduce false-positive errors. The reason is that if two different users type the same command at their
hosts respectively, it is hard to tell the packets captured at H1 actually coming from two different hosts.
In order to fix this issue, we identify the packets captured at H1 as two different categories: Send and
Echo. When an intruder or a user types any Unix/Linux command, the packet of each character from
each keystroke can arrive at the host H1 via its incoming session, and be forwarded to the host connected
by the outgoing connection. Finally, each packet invoked from the intruder’s host comes to the end host
of the connection chain which is the victim of the intruder. We call this type of packet a Send packet.
For each received Send packet, the victim host echoes the request, and the echoed response can go back
to the intruder’s host along the connection chain reversely. We call this type of packet an Echo packet.

11
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However, how can we identify a Send/Echo packet from a connection chain technically?

The way to identify if a captured packet is a Send or an Echo is to make use of both the packets flow
direction and its corresponding TCP header flags. As shown in Figure 5, either the incoming connection
or the outgoing connection has both Send and Echo packets. In the incoming connection of H1, a Send is
defined as a packet that its destination IP is the IP address of H1, the destination port number is 22, and its
TCP flags have PSH bit set up. An Echo is defined as a packet that the source IP address is the IP address
of H1, the source port number is 22, and its TCP flags have PSH bit set up. In the outgoing connection of
HI, a Send is defined as a packet that its source IP is the IP address of H1, the destination port number is
22, and its TCP flags have PSH bit set up. An Echo is defined as a packet that its destination IP address
is the IP address of H1, the source port number is 22, and its TCP flags have PSH bit set up. Using these
rules, it is trivial to write a TCPdump filter, or make our own program to capture not only the packets sent
from HI, but also distinguish them to be Send or Echo packets. As shown in Figure 5, for the incoming
connection, the Send packet is denoted as S;, and the Echo packet as E;. Similarly, for the outgoing
connection, the Send packet is denoted as S, and the Echo packet as E ; The significance to introduce
Send and Echo packets is that the length of each Send packet from different users may be the same, but as
long as a command is executed at a victim host, the length of each Echo packet might be different since
they are echoed from different servers, which may result in different packets sizes from the responses.

We put the captured packets from the incoming connection of the host H1 into a packet stream {p;, }
with m packets, as well as the ones from the outgoing connection into {p,, } with n packets. If the two
connections are relayed, m is either equal to or close to n. We check each packet in the input stream
{pin}, and then decide not only the type of each packet (Send or Echo), but also its length. We obtain the
following timestamp sequence C;, = {(S; or E;, Len)} for the input stream { pj, }, as well as a timestamp
sequence C,,; = {(S} or E!, Len)} for the output stream { p,;; }.

The next step is to compare the similarity between the two timestamp sequences Cj, and C,,;. We
adopted a sequence comparison algorithm proposed by S. Wu in 1990 [20] to compute the similarity
between two timestamp sequences. We assume there are two sequences Cj, with length M, and C,,;
with length N. It is also assumed that N > M without loss of generality. The way to compare the two
sequences Cj, and C,,; and is to find either the longest common subsequence (LCS) or a shortest edit
script (SES). Here it is assumed that we find a SES from the comparison of two sequences. An edit script
is to edit one sequence to another one via delete/insert actions in which “delete” action specifies which
character in sequence Cj, to be deleted and “insert” action specifies which character in sequence C,,, to
be inserted. A SES is an edit script whose length is the minimum among all the possible edit scripts
that edit a sequence Cj, to a sequence C,,,. The similarity between two sequences can be defined as the
number of delete/insert actions needed to edit the sequence C;, to the sequence C,,, . For the details of
sequence comparison algorithm, please refer to the paper [20].

We summarize the proposed algorithm to detect stepping-stone intrusion in Algorithm 1. If a con-
nection is manipulated by an intruder, such as chaff perturbation manipulation, it may affect the similarity
between the two timestamp sequences and further affect SSI detection performance. We will study the
impaction to the performance of the proposed algorithm in Section 6. But we need to pay attention to
a fact that is an intruder can only chaff a connection, but cannot remove any original packets from a
connection. In Section 6, we will use some experimental results completed in both a local area network
and the Internet to justify the performance of Algorithm 1.

5.2 Parsing Algorithm

The step before comparing all the incoming and outgoing streams of traffic data is to process the file
containing the captured packets and extract the useful information. We used a connection chain where the
IP of the attacker (here we assume we know the attacker’s IP address) is 192.168.1.110, which connected
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Algorithm 1: The Detection Algorithm
Input : Similarity threshold A

Step 1: Capture packets using TCPdump and put them into a stream {p;, } or {pou }

Step 2: Apply Parsing Algorithm (See Section 5.2 below) to the header information of each
packet to convert each stream into a timestamp sequence or

Step 3: Call a sequence comparison algorithm (see Section 5.3 below) to obtain the similarity f3
between the two timestamp sequences

Step 4: if B > A, a stepping-stone intrusion is detected

End

to the sensor with IP address of 192.168.1.142, which then connected to the victim computer with IP
address: 18.224.15.240. In Figure 6, it shows an example of the packets captured on the incoming-
connection side of the sensor, and in Figure 7, it shows an example of packets captured on the outgoing-
connection side of the sensor.

For the file parser algorithm (Algorithm 2), we need to know the file name and what side of the
connection it belongs to (incoming or outgoing) with respect to the sensor. We first access the collected
data file and read through the file line by line until the end of the file. Each packet is then split into an
array delimited by blank spaces. Once we have each packet in an array, we know the source IP and the
destination IP are in index 2 and 4 respectively. Here, we have to handle the incoming data and outgoing
data in different ways. If the packet’s destination is the sensor, and the packet comes from the incoming
side of the connection, it is a Send packet. If the same packet had the source same as the sensor IP, then
it is an Echo packet, and vice versa for the outgoing side of the connection. We identify each packet
as a Send or an Echo using tags ’s’ or ’e’ respectively and append the packet length to it. We save this
information for every packet in the given file and return it as a string for the next step.

Figure 7: An example of outgoing packets collected
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Algorithm 2: The Parsing Algorithm
function fileReader(File file, String channellype): String
Begin
int srclpldx:=2
int dstlpldx:=4
String sensorIP= //ip address of the sensor machine
String output :=""
while file has nextLine
Begin
temp:= read nextLine from File
aLine:= split temp on ”
if(channel Type == "outgoing”)

Begin
if(aLine[srcIpldx] == sensorIP)
Begin
output:= out put +' s' + aLine[len(aLine) — 1] +' \n'
End
else if (aLine[dstIpIldx] == sensorIP)
Begin
output:= out put +' ¢’ + aLine[len(aLine) — 1] +'\n'
End
End
else if(channel Type == “incoming”)
Begin
if(aLine[srcIpldx] == sensorIP)
Begin
output:= out put +' € + aLine[len(aLine) — 1] +'\n'
End
else if (aLine[dstIpIldx] == sensorIP)
Begin
output:= out put +' ' + aLine[len(aLine) — 1] +'\n’'
End
End
End
fileReader:= output

End

5.3 Sequence Comparison Algorithm

For the purpose of connection matching, we adopt the O(NP) sequence comparison algorithm proposed
in [20]. Given any two sequences, A and B, of length M and N, respectively, this algorithm calculates
the shortest edit distance from the smaller sequence to the larger one. Here, the edit distance is the total
number of deletions and insertions that is required to change sequence A into B. In this algorithm, the
two sequences are casted into a grid-like graph that’s called an edit graph. The grid can have horizontal,
vertical, or diagonal edges. The horizontal edges correspond to an insertion and the vertical ones corre-
spond to a deletion. Diagonal edges mean the two sequences are similar at the diagonal. If we give every
horizontal and vertical edge a weight/cost of 1 and every diagonal edge a 0, the solution for calculating
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the shortest edit distance can be given by the shortest path from source(0,0) to sink(M,N) in the edit
graph.

Figure 8: Edit Graph of A and B

Let A="E36S46E64andB="S36E36S 64’. The shortest edit script to transform A into B
is: we first insert ’S 3 6’ to the beginning of A, keep ’E 3 6 S’ as it is, delete *4’, keep ’6’ as it is, delete
’E 6’ and keep the 4’ in the end. In the edit script, we deleted 3 elements and inserted 3, giving the
edit distance of 6. We can calculate this number by counting the number of vertical and horizontal edges
on the edit graph shown in Figure 8. Let each diagonal in the edit graph be denoted by k, where k=y-x.
The diagonals are numbered from -M to N. Let P denote the number of deletions in the edit script, D
denote the shortest edit script, and A be the difference between N and M. Wu’s algorithm only examines
the vertices between diagonals -P and A+ P. This algorithm computes sets of vertices with the furthest
y value with a certain D-value until the sink is reached within diagonals -P and A 4 P.

Algorithm 3 (Sequence Comparison Algorithm) starts by initializing fp[], which is a set of D-values
for each point in the diagonals from -M to N, to -1 since we do not know their D-values at the start. We
also define a function ”snake(k, y)” that computes the longest sequence on a diagonal k starting from y.
Back in the main program, we use the snake function, and fp[k+1] and fp[k-1] to compute fp[k]. We start
from diagonal 0 and divide the edit graph into three different parts which will be handled differently. For
all k from -p to A, we call the function snake(k, max-of(fp(k - 1,p) + 1, fp(k + 1,p - 1)). After that part is
done, we compute snake(k, max-of(fp(k - 1,p) + 1, fp(k + 1,p - 1)) for k from A+p down to A. Finally,
we call snake(A, max-of( fp[A-1]+1, fp[A+1])) for fp on diagonal A.

6 Experimental Verification and Result Analysis

In order to test the performance of the proposed algorithm, we designed an experiment to collect and
analyse network packets. The first part of the experiment is to test the performance of the algorithm
in a local area network. The second part is to test the performance of the algorithm in the Internet
environment. In this section, we discuss the experimental setup, data collection, packets manipulation,
the comparison result, and the result analysis.

6.1 Experimental Setup, Data Collection and Manipulation

We set up three connection chains with each one consisting of three computer hosts: Attacker, Sensor,
and Victim. The three connection chains share the same sensor as shown in Figure 9. The algorithm was
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Algorithm 3: The Sequence Comparison Algorithm
function edit-distance(String A, String B)
Begin
M = length-of-A
N = length-of-B
int fp[-M+1),.......,(N+1)]:=-1
int p:=1
repeat

p:=p+l
forki=-pto A
fplk]:= snake(k, max-of(f[k-1]+1,fp[k+1]))
fork:i=A+ptoA,step -1
fp[k]:= snake(k, max-of(fp[k-1]+1, fp[k+1]))
fp[A]:= snake(A, max-of(fp[delta-1]+1, fp[A+1]))
until fp[A]=N
End

function snake(k, y)
Begin
int x:=y-k
while x < M and y < N and A[x] = Bly]
Begin
x:=x+1
y:i=y+1
End
snake:=y
End

tested under two different networks: a local area network, and the Internet. In a local area network setup,
the attacker, sensor, and victim hosts are all located in the same network. In the context of the Internet,
the attacker and the sensor hosts are both in the same local area network, but the victim hosts are AWS
servers from Amazon.com. The AWS servers were physically located in Ohio, Washington, and Florida,

Computer Host used Computer Server
by Attacker 1 ~ used as a Victim 1
Computer Hostused h 1 —
by Attacker 2 T Computer Server
used as a Victim 2

respectively.

Stepping-stone Host
used as an Sensor
: Computer Server
Computer Hostused used as a Victim 3
by Attacker 3
Figure 9: Experimental Setup

In both local area network and the Internet context, the attacker and sensor hosts are both under our
control so we can make network traffic from attackers’ hosts, and collect the network packets from the
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sensor host. We simulate three attackers using three different scripts to access three different victims
respectively in three different tasks. The first attacker logs into the victim as a root user, accesses and
downloads the shadow file from the ./etc directory. The second attacker opens a file already in the victim
machine and appends data onto it. And the third attacker deletes and creates a modified version of a
file already on the victim computer. The command scripts used by the three attackers are listed below,
respectively:
First attacker:

pwd

whoami

sudo su

Is

cd /etc

Is -a

scp -p shadow attacker_username @ attacker_IP:/home/seed/Documents

exit

Second attacker:
whoami
pwd
cd /home/seed/Documents
Is
nano text_file.txt
Is
cat hello.txt
exit

Third attacker:
whoami
pwd
cd /home/seed/Documents
Is
nano hello.txt
Is
cat hello.txt
exit

The attackers executed their different tasks simultaneously and their network traffic were collected in
the sensor host and stored in separate files. Each text file contains the packet header information for the
packets captured. As shown in Figure 6, some sample packets for an incoming connection are captured.
And Figure 7 shows some packets for an outgoing connection. We used TCPdump to capture all the
incoming and outgoing packets for all three of the connection chains. The packets were filtered for only
Send and Echo packets collected. The commands used for the incoming and outgoing packets collection
are listed below, respectively, where ’-x’ can be 1, 2, or 3 to represent different connection chains.

* tcpdump -i interface-id -nn ’(tcp[13]&8!=0)" and dst sensor-ip and dst port 22 > incoming-x.txt

* tcpdump -i interface-id -nn ’(tcp[13]&8!=0)" and src sensor-ip and src port 22 > outgoing-x.txt
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In the above commands, the ’tcp[13]&8!=0" filter ensures we capture only those packets that have
their push-flag up. The packets can have a [P] representing a push packet or a [P.] representing a com-
bination of push and Ack packet. We filter out all the Ack packets since they do not contain any useful
information for the SSI detection purpose. We manipulated the data collected by chaff-perturbation.
The goal of chaff-perturbation is basically to insert some meaningless packets to defeat an SSI detection
algorithm. In our simulation, we randomly inject 10%, 20%, 30%, ... packets into the original packets
collected to obtain a chaffed data set respectively. The manipulated data set with different chaff rates
can be used to test the resistance performance to chaff-perturbation for the algorithm proposed. To get
a complete resistance performance evaluation, we chaffed not only one side of the sensor (either the
incoming or the outgoing connection), but also both the incoming and outgoing connections. The former
one is called chaff-single, and the latter one is called chaff-both. In this paper, we show the performance
results of the proposed SSID algorithm to resist intruders’ chaff-perturbation in both chaff-single and
chaff-both.

6.2 Experimental Results and Its Analysis on a Local Area Network

We first verified the resistance performance of the proposed SSID algorithm on a local area network. As
shown in Figure 9, all three Attackers, one Sensor, and three Victims are located in our department lab.
Each attacker made its own network traffic to its corresponding victim via the same sensor. For each
connection, all the incoming and outgoing network traffics are collected and stored into incoming-x.txt
and outgoing-x.txt respectively where ’x’ can be 1, 2, or 3 to represent the connection number. We
captured data for each of the attacker scenarios as described in Section 6.1 and repeated the experiment
for twenty times. Each data set identifies the incoming and outgoing traffic for the experiment in different
files. For simplification, we use short names to name them as i1, i2, i3 for the incoming collected data for
attacker one, two, and three respectively. Similarly, o1, 02, and 03 identify the outgoing data for attacker
one, two, and three respectively. We ran the proposed algorithm to get the similarities between the
incoming and outgoing network traffic for the same connection chain, as well as for different connection
chains. If the similarity for the same connection chain is apparently larger than the one for different
connection chains, stepping-stone intrusion can be detected. Table 2 shows the similarity average results
over twenty-time experiments between each incoming and each outgoing connection of the sensor.

Table 2: SSID Similarities in a local area network

Incoming traffic | . . .
Outgoing traffic il 2 i3
ol 0.940787 0.240007 0.433973
02 0.208546 0.846652 0.520239
03 0.418891 0.663608 0.920904

In Table 2, it clearly shows that if an incoming and an outgoing connection are in the same chain, the
similarities are above 84%, otherwise, they are less than 66%. This indicates the proposed algorithm can
detect stepping-stone intrusion.

In order to assess the performance of the proposed algorithm to resist intruders’ chaff-perturbation
manipulation, we injected meaningless packets from 10%, 20%, ..., upto 70%, then computed the sim-
ilarities between the connections in the same chain, and then compare with the similarities between the
connections from different chains. We can chaff single side or both sides of the sensor. Table 3 shows
the similarity results by chaffing single side. In Table 3, column 2 through column 8 of row 1 repre-
sents the chaff rates. Table 4 shows the similarity results by chaffing both sides from 10% to 140%. In
Table 4, column 2 through column 15 of row 1 represents the chaff rates. In these two tables, ”Sim 1”
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represents the similarity between the incoming traffic and the outgoing traffic in the connection chain
made by attacker one. Similar representations are for Sim 2, and Sim 3, respectively. Term ”UnSim 1”
represents the maximum similarity between the incoming connection 1 and the outgoing connection 2
and 3 respectively. Similar definition holds for "UnSim 2”, and ”UnSim 3”. Figure 10 and Figure 11 are
the charts to show the similarities in Table 3 and Table 4 respectively. Figure 10 shows a performance
crossing between Sem 1 and UnSem 3 when the chaff rate increased to 70%. This means the proposed
algorithm can resist intruders’ chaff perturbation at most 70% if single side is manipulated. What shown
in Figure 11 tells us that, if both sides are manipulated, the proposed algorithm can resist intruders’ chaff
perturbation up to 140%.

Table 3: SSID similarities in a local area network under single-side chaff
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Figure 10: Resistance to single-side chaff-perturbation in local area network
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o Chaff Rate | | 0.2 03 0.4 05 0.6 0.7
Similarity
Sim 1 0.902559 | 0.867671 | 0.833115 | 0.800531 0.770316 | 0.731533 | 0.71475
Sim 2 0.833218 | 0.829717 | 0.827477 | 0.816155 | 0.799215 | 0.781755 | 0.765408
Sim 3 0.905536 | 0.887944 | 0.864960 | 0.838407 | 0.815215 | 0.787652 | 0.762895
UnSim 1 0.448398 0.477159 | 0.502036 | 0.52663 0.549517 | 0.571408 | 0.594105
UnSim 2 0.624611 0.591216 | 0.56061 0.533237 | 0.507746 | 0.484474 | 0.463203
UnSim 3 0.554379 | 0.586153 0.615367 0.642404 | 0.666057 | 0.69031 0.711866
Table 4: SSID similarities in a local area network under both-side chaff
o ChaffRate | o\ 105 103 |04 |os |oe6 |07 |08 |09 |10 |11 |12 [13 |14
Similarity
Sim 1 0.899 | 0.887 | 0.880 | 0.875 | 0.872 | 0.871 | 0.868 | 0.866 | 0.865 | 0.863 | 0.861 | 0.859 | 0.859 | 0.855
Sim 2 0.808 | 0.795 | 0.790 | 0.781 | 0.781 | 0.781 | 0.777 | 0.776 | 0.779 | 0.777 | 0.781 | 0.782 | 0.782 | 0.782
Sim 3 0.884 | 0.870 | 0.865 | 0.856 | 0.855 | 0.852 | 0.846 | 0.843 | 0.843 | 0.839 | 0.838 | 0.839 | 0.840 | 0.839
UnSim 1 0.417 | 0417 | 0416 | 0.415 | 0.414 | 0.414 | 0.414 | 0.413 | 0413 | 0.411 | 0.411 | 0.413 | 0.411 | 0.410
UnSim 2 0.662 | 0.661 | 0.659 | 0.659 | 0.658 | 0.658 | 0.656 | 0.656 | 0.657 | 0.657 | 0.658 | 0.659 | 0.662 | 0.664
UnSim 3 0.518 | 0.518 | 0.516 | 0.515 | 0.515 | 0.516 | 0.514 | 0.516 | 0.515 | 0.516 | 0.518 | 0.518 | 0.517 | 0.519
e Sim 1 Sim 2 Sim 3 e nSim 1l es{nSim 2 e—)nSim3
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Figure 11: Resistance to both-side chaff-perturbation in local area network

6.3 Experimental Results and Its Analysis on the Internet

The resistance performance of the proposed algorithm was also assessed using the network traffic from
the Internet. It has the similar network connection setup as in a local area network. The only difference
is that the three victim hosts are AWS servers located in different states of the United States. The reasons
that we assess the detection algorithm in the Internet are as follow. First, all the attackers launch their
attacks via the Internet, other than a local area network. Second, a connection chain established in the
Internet may cause a longer response delay than in a local area network. Third, a packet split, and/or
packet merging occurred in the Internet may affect the detection performance of the proposed algorithm.
We repeated the same process as we did in Section 6.1 to collect the incoming and outgoing network
traffic from the sensor. The data sets collected were processed via the SSID algorithm, and the obtained
results are shown in Table 5, Table 6, Table 7, Figure 12, and Figure 13, respectively.

Table 5: SSID Similarities on the Internet

Incoming traffic | . . .
Outgoing traffic il 2 13
ol 0.729038 0.185432 0.337353
02 0.131143 0.896734 0.501174
03 0.238080 0.539846 0.949879

From the results shown in Table 5, we see the proposed algorithm can detect stepping-stone intrusion
under the context of the Internet, and obtain a similar performance as in a local area network. In Table 6,
the results show the proposed algorithm presents better performance in the Internet than in a local area
network in terms of resistance to intruders’ chaff-perturbation manipulation. In Figure 12, it shows there
is a crossing between Sim 2 and UnSim 3 when the single-side chaff rate reaching 80%. This indicates,
under the context of the Internet, the proposed algorithm can resist intruders’ manipulation up to 80% of
single-side chaff rate which is a little higher than the one in the context of a local area network. However,
when both sides of the sensor are chaffed, the results shown in Table 4 and Figure 13 presents a similar
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Table 6: SSID similarities on the Internet under single-side chaff

o Chaff Rate | | 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Similarity
Sim 1 0.736491 | 0.741859 | 0.746223 | 0.746883 | 0.743977 | 0.739247 | 0.730983 | 0.721077
Sim 2 0.871032 | 0.848337 | 0.820099 | 0.792302 | 0.764496 | 0.74029 0.715852 | 0.692721
Sim 3 0.922392 | 0.894375 | 0.862214 | 0.831892 | 0.801985 | 0.773674 | 0.746302 | 0.721515
UnSim 1 0.248555 | 0.259386 | 0.269311 | 0.279442 | 0.28987 0.299796 | 0.309645 | 0.319922
UnSim 2 0.507653 | 0.479227 | 0.453611 | 0.430719 | 0.411298 | 0.392751 | 0.375563 | 0.3603
UnSim 3 0.531461 | 0.556525 | 0.584458 | 0.607655 | 0.629783 | 0.651992 | 0.67061 0.684988
Table 7: SSID similarities on the Internet under both-side chaff
o ChaffRate | 1 Vo5 103 |04 |os |06 |07 |08 |09 |10 |11 |12 |13 |14
Similarity
Sim 1 0.706 | 0.697 | 0.692 | 0.688 | 0.686 | 0.683 | 0.683 | 0.681 | 0.680 | 0.679 | 0.679 | 0.678 | 0.680 | 0.679
Sim 2 0.807 | 0.782 | 0.769 | 0.773 | 0.760 | 0.756 | 0.758 | 0.756 | 0.757 | 0.760 | 0.764 | 0.765 | 0.764 | 0.759
Sim 3 0.910 | 0.897 | 0.880 | 0.884 | 0.881 | 0.878 | 0.877 | 0.872 | 0.871 | 0.868 | 0.864 | 0.859 | 0.863 | 0.864
UnSim 1 0.236 | 0.236 | 0.235 | 0.235 | 0.234 | 0.235 | 0.234 | 0.234 | 0.234 | 0.234 | 0.234 | 0.234 | 0.233 | 0.233
UnSim 2 0.503 | 0.502 | 0.500 | 0.502 | 0.502 | 0.502 | 0.505 | 0.507 | 0.508 | 0.513 | 0.516 | 0.518 | 0.519 | 0.519
UnSim 3 0.499 | 0.496 | 0.496 | 0.497 | 0.496 | 0.498 | 0.499 | 0.500 | 0.504 | 0.504 | 0.507 | 0.509 | 0.513 | 0.512

performance as in a local area network.

6.4 Comparison with Existing Detection Algorithms

As we discussed in the Introduction session, there were many methods proposed to detect stepping-
stone intrusion. However, most approaches cannot resist intruders’ chaff-perturbation attack. Some of
them may resist chaff attack to a certain degree, but their performances are worse than the algorithm
we proposed. Table 8 shows the comparison results between our algorithm and the algorithms recently
developed.

Table 8: Comparison of Performance Results with Existing Detection Algorithms
. Compared items Able to detect stepping-stone in- | Resistant to chaff attacks? If Yes,
Algorithms .
trusion? up to what chaff-rates?
The algorithm proposed in this pa- | Yes Yes, up to 80%
per
Context-based TCP/IP packets | Yes Yes, up to 20%
matching, 2010
A dynamic programming tech- | Yes No
nique, 2010
Packet mining approach, 2012 Yes Yes, up to 40%
Random Walk approach, 2015 Yes Yes, up to 40%
Packet cross-matching, 2016 Yes Yes, up to 30%
K-Means data mining and cluster- | Yes Yes, up to 20%
ing, 2020
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Figure 12: Resistance to single-side chaff-perturbation on the Internet
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Figure 13: Resistance to both-side chaff-perturbation on the Internet

7 Conclusion and Future Work

Most intruders tend to launch their attacks through stepping-stones in order to avoid detection and cap-
ture. Since 1990s, there have been many algorithms developed to detect stepping-stone intrusions. Most
of the methods proposed can be defeated by intruders’ session manipulation, such as chaff-perturbation.
In this paper, we proposed a novel approach by modelling computer network traffic and exploiting en-
crypted packets to detect stepping-stone intrusions. Network traffic can be modelled as a timestamp
sequence of the length of Send and Echo packets. Stepping-stone intrusions can be identified by com-
paring the sequence of the incoming connection with the one of the outgoing connections of a sensor.
The experimental results show that the proposed algorithm can not only be able to detect stepping-stone
intrusion effectively, but also resist intruders’ single-side chaff- perturbation up to 70% in a local area
network, as well as 80% under the context of the Internet. More surprisingly, the proposed algorithm
presented better performance in resisting intruders’ both-side chaff-perturbation than in single-side. The
experimental results also show, when the both sides of the sensor are chaffed, and the chaff rate was
increased to 140%, the proposed algorithm was still not defeated. This indicates that the proposed algo-
rithm presented a much stronger resistance performance in both-side than in single-side.
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In the future, first, we will focus on the optimization of the sequence comparison algorithm. This
will further improve the detection performance of the proposed algorithm. We will also explore more
information hidden in encrypted network traffic to detect stepping-stone intrusion, and resist intruders’
manipulation. Second, we will study under different encryption algorithms, how to detect stepping-stone
intrusion by using the length of encrypted packets since the length may be changed.
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