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Abstract 

Segmentation of patient-specific anatomical models is 

one of the first steps in Electrocardiographic imaging 

(ECGI). However, the effect of segmentation variability on 

ECGI remains unexplored. In this study, we assess the 

effect of heart segmentation variability on ECG 

simulation.  We generated a statistical shape model from 

segmentations of the same patient and generated 262 

cardiac geometries to run in an ECG forward computation 

of body surface potentials (BSPs) using an equivalent 

dipole layer cardiac source model and 5 ventricular 

stimulation protocols. Variability between simulated BSPs 

for all models and protocols was assessed using Pearson’s 

correlation coefficient (CC). Compared to the BSPs of the 

mean cardiac shape model, the lowest variability (average 

CC = 0.98 ± 0.03) was found for apical pacing whereas 

the highest variability (average CC = 0.90 ± 0.23) was 

found for right ventricular free wall pacing. Furthermore, 

low amplitude BSPs show a larger variation in QRS 

morphology compared to high amplitude signals. The 

results indicate that the uncertainty in cardiac shape has a 

significant impact on ECGI. 

 

1. Introduction 

Electrocardiographic imaging (ECGI) is of interest to 

guide clinical diagnosis, treatment and risk-stratification in 

patients. In ECGI, body surface potential (BSP) 

measurements are combined with patient-specific 

anatomical models to estimate cardiac electrical activity. 

Mathematical models are established to relate cardiac 

electrical activity to BSPs [1]. Whereas it is known that 

ECGI estimations are affected by the parameter settings in 

this forward model [2], many questions remain on the 

effect of segmentation uncertainty. It was shown 

previously that segmentations differ mainly for cardiac 

geometry [3]. Thus, in the research presented in this paper, 

we focus to study the variation in segmentation that may 

significantly affect computed BSPs from equivalent dipole 

layer source models. The study builds on previous research 

that was conducted by the Consortium for ECG Imaging 

(CEI) (https://www.ecg-imaging.org/) [3,4].  

 

2. Materials and Methods 

To describe the effect of variation in segmentations on 

computed BSPs, we implemented a statistical shape model 

derived from 15 ventricular segmentations of a single 

patient. Subsequently we simulated multiple BSPs, and 

computed statistics on the BSPs to relate to the shape 

statistics (Figure 1).  The CT scans used in this study are 

publicly available on the EDGAR database as the 

Dalhousie dataset (https://www.ecg-imaging.org/edgar-

database) [5]. 

 

Figure 1. Study pipeline. 

2.1. Statistical Shape Model 

The statistical shape model used in this study was 

computed using ShapeWorks [6] on the 15 cardiac 

segmentations that were prepared by 15 different observers 

using their own in-house software tools. ShapeWorks 

contains a particle system optimizer that computes 
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correspondence points between all segmentations allowing 

to compute statistical shape models. The generated shape 

model comprises the mean shape and the major modes of 

variation computed using principal component analysis 

(PCA). The first five shape modes (Figure 2) capture >90% 

of the shape variability and were included in the shape 

model. The shape model was sampled 262 times using 

weighted Fekete sampling [7] assuming a uniform 

distribution along each shape mode and a range of 2 times 

the computed standard deviation (σ) computed for each 

axis. The correspondence points derived from these 

samples were used to generate closed triangulated surface 

meshes for forward simulation and for comparison of 

cardiac data between samples.  

 
Figure 2. First five modes of variation with standard 

deviation (σ) presented in mm.  

2.2. Forward Simulations 

For all generated cardiac meshes, five types of 

ventricular stimulation protocols were used, consisting of 

four paced beats and one sinus beat (Figure 3). The paced 

beats were initiated in the left ventricle free wall, right 

ventricle free wall, at the apex or the septum whereas the 

sinus beat was represented with six simultaneous foci to 

mimic healthy ventricular activation. Ventricular 

activation sequences were calculated using the fastest route 

algorithm [8] assuming uniform propagation velocity 

(1.15 m/s) for each shape model and stimulation protocol. 

Subsequently, BSPs were computed using the equivalent 

dipole layer (EDL) cardiac source model [2] with the 

boundary element method-based volume conductor model. 

Local source strength was determined by the local 

transmembrane potential (TMP) shape. The BSPs were 

computed for all cardiac shapes assuming the same 

homogeneous torso model with 120 electrodes. 

 
Figure 3. Ventricular stimulation protocols depicted for the 

mean cardiac shape model. 

2.3. Data Analysis 

 For all BSPs simulations, all parameters were kept 

constant to specifically study the effect of the cardiac shape 

on the depolarization phase in computed BSPs. Analysis 

was focused on local activation timing (LAT) maps at 

correspondence points and the simulated QRS complexes. 

LAT at correspondence points was computed per shape 

model using linear interpolation. Simulated BSPs were 

compared by means of correlation coefficient (CC), QRS 

duration and RS amplitude. Root mean square (RMS) 

signals were computed for the 120-lead BSPs per model 

for each simulation. Per time instant, the variation in the 

RMS signal was determined by dividing the range in the 

amplitude of the RMS signal by the mean of the amplitude 

at the same time instance. Data are presented as 

mean ± standard deviation or median [range] as 

appropriate. 

3. Results 

Compared to the LAT sequence of the mean shape 

model, the average CC was 0.98 ± 0.02 and the average 

absolute difference in LAT was 2.8 ± 3.2 ms. For all 

stimulation protocols, the standard deviation in LAT 

ranged between 0 and 22 ms (Table 1).  

Table 1. Average correlation coefficient (CCavg), average 

absolute difference (ADavg), and standard deviation range 

(STDevr) in local activation timing (LAT) for all protocols.  

Protocol CCavg [-] ADavg [ms] STDevr [ms] 

LV 0.99 ± 0.01 4 ± 9 0 - 11 

RV 0.98 ± 0.02 5 ± 9 0 - 22 

Apex 0.99 ± 0.01  4 ± 12 0 - 8 

Septum 0.97 ± 0.04 3 ± 7 0 - 20 

Sinus 0.98 ± 0.01 3 ± 6 0 - 7 

 

The variability in computed QRS complex for the five 

protocols is shown in Figure 4 for two representative leads 

of the standard 12-lead ECG. The simulated BSPs differ in 

both morphology and QRS duration. On model-to-model 

basis, the lowest average CC 0.54 ± 0.40 was observed for 

lead V1 when simulating septal stimulation (Figure 5).  

The average CC between QRS complexes was 

0.93 ± 0.07 over all stimulation protocols. Compared to the 

QRS complex of the mean shape model, the average CC 

was 0.95 ± 0.13 (Table 2). Between stimulation protocols, 

there were small differences. The highest average CC was 

observed for the stimulation protocol initiated at the apex 

of the ventricles, whereas the lowest average CC was 

observed for the RV paced beat. The average QRS duration 

was the highest for RV stimulation, but the highest 

standard deviation with respect to the average QRS 

duration was observed for the LV stimulation protocol 

(Table 2).  

The variation in RMS signals (Figure 6) showed that for 

all beats, the variation was highest at end of the QRS 

complex. But whereas the variation differed for LV, RV, 

and septal stimulation over the course of the QRS complex, 
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for apical stimulation it remained similar.  

 
Figure 4. The simulated QRS complexes for all 262 cardiac 

shape models (orange) and mean shape (black) for a lead 

II and V1 of a standard 12-lead ECG for all protocols. 

 
Figure 5. Pearson’s correlation matrix for a lead II and V1 

of a standard 12-lead ECG for all protocols. 

Table 2. Average correlation coefficient (CCavg), the range 

of CC (CCr) and QRS duration (QRSdur) for all protocols.  

Protocol CCavg [-] CCr [-] QRSdur [ms] 

LV 0.97 ± 0.10 -0.86 – 1.00 124.14 ± 5.35 

RV 0.90 ± 0.23 -0.86 – 1.00 134.69 ± 3.87 

Apex 0.98 ± 0.03  0.50 – 1.00 114.75 ± 2.40 

Septum 0.95 ± 0.11 -0.63 – 1.00 98.04 ± 3.44 

Sinus 0.93 ± 0.10 -0.62 – 1.00 70.26 ± 2.68 

 
Figure 6. The variation in RMS signal for all protocols. 

 

Per stimulation protocol, the torso electrodes most 

affected by the variation in cardiac shape were different 

(Figure 7). In the stimulation protocol with the highest 

average CC (Table 2, apex), variation in CC over all 

electrodes was low whereas with lower average CC, 

variation over electrodes in CC was higher.  The variation 

in QRS complexes for the five electrodes with the lowest 

average CC for RV stimulation shows that the RS 

amplitude ratio of the QRS changes and the amplitude of 

the QRS complexes is low for those signals (Figure 8). 

There was a relation between RS amplitude and CC, with 

lower CCs QRS complexes had lower amplitude (Figure 9) 

for all stimulation protocols. 

Figure 7. The average CC and RS amplitude computed for 

all torso electrodes and all protocols for the anterior and 

posterior sides of the torso. The color of the electrode 

corresponds to the average CC or RS amplitude computed 

per electrode for all shape models and the size of the 

electrode increases with increasing standard deviation. 

 
Figure 8. The simulated QRS complexes for all 262 cardiac 

shape models (orange) and mean shape (black) for selected 

torso electrodes with the lowest mean CC for RV 

stimulation protocol. 

 

Figure 9. The CCs vs RS amplitude for all cardiac shape 

models and all protocols. 
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4. Discussion 

In this study, we analyze the effect of variability in 

cardiac segmentations on the solution of the forward 

problem. An overall good correlation (0.98 ± 0.02) was 

observed between LAT sequences per stimulation protocol 

(Table 1). We demonstrate that BSPs computed for 262 

cardiac shape models vary on both the model-to-model 

(Figure 5) and model-to-mean basis (Figures 4, 7 and 8). 

Per stimulation protocol, different leads were affected 

most (Figure 7).  The lowest CC values were observed with 

RV pacing and the highest for apical pacing (Table 2). 

When relating this to the cardiac segmentation variability 

[3], the lowest variability in shape was also observed 

around the apex of the heart. Thus, the lower variability in 

QRS morphology may be the result of an overall more 

similar average direction (apex to base) of activation waves 

traveling through the heart during apical pacing when 

compared to the other paced beats. For apical stimulation, 

the variation in the basal segment is likely to significantly 

change QRS morphology only at the beginning and end of 

the QRS complex, but less effect is expected in mid-QRS 

as the main direction of cardiac activation remains similar 

from apex to base (Figure 6). In the other pacing protocols, 

changes at mid-QRS are observed, which can be explained 

by the fact that if the pacing sites are closer to the base it 

will thus affect QRS morphology at mid-QRS, as the basal 

region is activated earlier.  

Furthermore, we showed that simulated QRS 

complexes for all torso electrodes were not equally 

affected by the variation in cardiac shape and that some 

electrodes show higher differences amongst simulated 

QRS complexes also depending on the pacing site. Higher 

differences between simulated QRS complexes occurred 

near the base of the heart, corresponding to high shape 

variability [3]. The highest differences in computed BSPs 

in terms of the CC were observed on the posterior side of 

the torso during RV pacing [3].  Signals in this area also 

showed low amplitude, however not all low amplitude 

signals had low CC (Figure 7). The high variability of the 

CC in the posterior region denotes that it is an area where 

the direction of activation changes the most.     

The results of this study suggest that the variation in 

cardiac shape affects the simulated BSPs. However, a more 

comprehensive study needs to be done to further quantify 

how the variation in shape affects the solution of the 

forward problem and consequently the ECGI estimation of 

cardiac activity. Furthermore, we used a simple model to 

simulate the activation sequences and did not yet focus on 

the repolarization phase. The effect of the application of 

repolarization gradients and more sophisticated models of 

cardiac activation will also be assessed with regards of the 

uncertainty quantification.      

5. Conclusion 

In this study, we showed that a high variation in shape 

is observed at the base of the ventricles around the heart 

valves. It was shown that this variation in cardiac shape 

affects the simulated BSPs. The extent to which the 

simulated signals are affected depends on the ventricular 

stimulation protocol used. The results suggest that 

variation in cardiac shape may have a significant impact on 

the ECGI. Thus, more emphasis must be placed on the 

study of the effects of variability in segmentations on the 

accuracy of the ECGI which plays an important role in 

clinical practice. 
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