
Received: February 17, 2017 126

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

Assessment and Optimization of User Imprecise Queries in Cloud Environments

Pichaimuthu Mohankumar1* Balusamy Balamurugan1

1Vellore Institute of Technology University, Vellore, India

 * Corresponding author’s Email: pennarasimohan@gmail.com

Abstract: Data size growth rate arose massively day to day due to database and internet applications. It has become

a challenging task to organize those data and to provide the user a relevant data in time with correct and compatible

manner. Further choice was a pervasive feature of social life that profoundly affects people. They work with

assumptions that stored data represent the proper subset of real world data and make a quick decision based on

imprecise knowledge in daily life for survivals which tends to get irrelevant output .Sometimes for other input, this

may be exact so it should not remove instead, managed to utilize appropriately to minimize the processing time.

Moreover, optimism significance relies on user satisfactions. This paper provides a vision to tackle these issues by

assessing the imprecise incoming query and reutilizing for future user instead of rejecting as wrong or irrelevant. To

address optimization issues in this paper, we proposed the techniques for optimizing the queries to provide customers

with fast data retrieval. In our model, Query processing: A 3-step process that transforms a high-level query

(MongoDB) into an equivalent and more efficient lower-level query (relational algebra). Further MEAN stack based

cooperative semantic approach was deployed in cloud environments as novelty to provide solution with the level of

performance significance.

Keywords: Imprecise, Queries, Optimisation, MEAN stack, Cloud.

1. Introduction

Life is always full of choices. People work with

assumptions that stored data represent the proper

subset of real world data and make a quick decision

based on imprecise knowledge[1] in daily life for

survivals which tends to get irrelevant

output .Sometimes for other input, this may be exact

so it should not remove instead, managed to utilize

appropriately to minimize the processing time. In

most applications, database servers are queried by

multiple clients. When using the classic semantic

caching [2] approach, clients store and manage their

own local caches independently. If the number of

clients is high, the amount of data sent by database

server and queries response times can rapidly

increase even when caching is used. The

performance can be further improved by allowing

clients to share their entries in a cooperative way.

Another limitation of existing semantic caching

solutions is that they do not handle update queries.

Modifications performed in the database are not

propagated to cache entries stored by clients.

Therefore, the Cooperative Semantic Caching [3]

approach will extend the general semantic caching

[4] mechanism by using a Peer-to-peer [5] approach

in order to enable clients to share their local

semantic caches in a cooperative manner. When

executing a query, the content of both the local

semantic cache and entries stored in caches of other

clients can be used. A new query will be split into a

probe, remote probes, and a remainder query. The

probe retrieves the part of the answer which is

available in the local cache. Remote probes retrieve

those parts of the query which are available in

caches of other clients. The remainder retrieves the

missing n-tuples from the server. In order to execute

the query rewriting, the cache entries of all clients

will be indexed in a distributed data structure built

on top of a P2P overlay that is formed by all clients

which are interrogating a particular database server.

Such an approach increases the performance of

databases systems and presents economic

Received: February 17, 2017 127

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

advantages when used in a cloud-computing

environment. By using MEAN stack approach to

execute a query, the content of both the local

semantic cache and entries stored in caches of other

clients can be used. A new query will be split into a

probe, remote probes, and a remainder query. The

probe recovers the part of in the local cache. Other

regains their queries found caches. In order to

execute the query rewriting, the cache entries of all

clients are indexed in a distributed data for query

optimization. The MEAN (Mongo, Express,

Angular, Node) based cooperative semantic

approach also contains a mechanism for handling

operations that modify the content of the collections

during the query handling process. Thus,

Cooperative semantic caching will use Peer to peer

technology in order to develop a cooperative

caching solution. It will include a suitable and

efficient mechanism for handling update queries, it

will support select-project queries, where a query

predicate is a n-dimensional range condition, it will

design a heuristic to dynamically decide when using

the cooperative cache is beneficial or not. As

example Indian railway online reservation, is the

very vast application which that deals many

outcomes .To book a online ticket we need to have

the database help, i.e.; trains timings, seats

availability, nearby stations, source and destination

etc., All these above mentioned information will

change for every minute. The database has to update

the information almost for every 5 to 10 seconds.

Accessing this kind of information and booking the

ticket and updating the database and providing the

information to the user are both very difficult tasks.

To overcome this cooperative semantic cache

mechanism was deployed. Here query processing is

both the predicates and the resulting tuples of

queries are cached. In query processing semantic

caching the availability and booking the ticket.

Using this CoopSC we are reducing the query

processing speed. Our database contains details of

all the trains and seats availability, clients from all

over the India share this information and book their

tickets, this work can be simplified and the

processing speed (response time to client query) can

be greatly reduced.

To address optimization issues in this paper, we

proposed the techniques for optimizing the queries

to provide customers with fast data retrieval. In our

model, Query processing has presented in 3-steps

that transforms a high-level query (of Mongo DB)

into an equivalent and more efficient lower-level

query for fast optimization. 1. Parsing and

translation (Check syntax and verify relations..,

Translate the query (Dynamo dB)), 2.Optimization

(Generate an optimal evaluation plan (with lowest

cost) for the query plan.), 3. Evaluation (The query-

execution engine takes an (optimal) evaluation plan,

executes that plan and returns the answers to the

query).On behalf of optimisation analysis a cloud

environment was chosen as it provides a

combination of parallel and distributed computing

paradigms. It has the characteristics of on demand

provisioning of shared pool of configurable

computing resources as service. Further it provides a

cost effective paradigm of computational, storage

databases resources to users over internet. The

increasing number of user query data deployed from

virtual instances can lead to increase loads. Multiple

queries compete for hardware resources causing

resources contention within a rapidly changing in

environment computational properties. Hence it has

become a mandatory and major challenging task for

researchers to provide efficient methodologies to

execute concurrent queries. The road map of this

paper initially discuss about the data analysis and

imprecision assessment and query optimisation in

terms parametric and multi-objective parametric

aspects of user queries as extension.

2. Related work

In this paper, we envision to address that

imprecise knowledge can add value to the Semantic

Web technologies and information retrieval and with

a stack of Semantic Web technologies that allow

imprecise knowledge as an essential ingredient for

building future applications. It is natural for a user to

specify preferences on varied aspects of an entity in

the pictured entity ranking task [6]. So, we will

expect a user’s question to carries with it

preferences on multiple aspects; as an example, a

preference question for an automotive can that

consists of preferences on 3 completely different

aspects (i.e., efficiency, price, and reliability). We

ought to take apart a question to get preferences on

completely different aspects. During this paper, we

have a drift to specialize in finding out effectiveness

of various ranking strategies, so we have a tendency

to assume that the multiple aspects during a user’s

question have already been metameric in order to

cypher the influence of question segmentation on

retrieval accuracy. Such a query can even be

naturally obtained by providing a multi-aspect

question type or asking a user to use a delimiter (e.g.,

a comma) to separate multiple preferences. As an

example, in Figure two, we have a tendency to show

a system interface wherever the users will notice

hotels in any town by stating their preferences on

the assorted aspects of hotels. Although this ranking

Received: February 17, 2017 128

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

downside closely resembles a, data retrieval

downside where the reviews of AN entity are often

thought to be an entity document, for vital variations

in the collections. First, the question is supposed to

precise a user’s preferences in keywords; so, it's

expected to be longer than regular keyword queries

on the net. More significantly, the question typically

would contain preferences on multiple aspects of

AN entity. As we are going to show later within the

paper, modelling these aspects will improve ranking

accuracy. Second, the ranking criteria [8] square

measure to capture however well an entity satisfies a

user’s preferences instead of the connection of a

document to a question as within the case of regular

retrieval. Therefore, the matching of narrow-minded

words or sentimental analysis would be important.

We are going to show that though ancient question

enlargement works moderately. This approach,

however, has some sensible limitations. First, these

approaches assume a fixed range of aspects on a

given entity. It’s not solely impractical to outline or

mine a set of aspects for every class of entities.

However, a hard and fast range of aspects would

additionally severely limit the kind of queries a user

may issue. a lot of significantly, all the add this line,

require some oversight therein they need the supply

of ratings related to reviews, which cannot

continually be gift. we have a tendency to take a lot

of general stance, that is to assume restricted data on

the opinions and also the aspects being queried and

specialize in leveraging strong retrieval models to

match the user’s preferences for Associate in

Nursing entity with opinions thereon entity. Dean

et.al [9] proposed a programming model and a

framework “Map Reduce” for processing large sets

of raw data. A map-reduce program consists of two

functions: Map and Reduce. The Map function

processes the input data by distributing them to

worker nodes for parallel computation and produces

a set of intermediate results as key-value pairs,

while the reduce function aggregates all the

intermediate results with the same key from each

node to produce the result. It can be used for

structured data analysis of large sets. The limitations

of Map Reduce as given in [10] are it produces the

necessary secondary indices in an offline batch

manner. Hence, secondary indexes are not up-to-

date. So newly inserted rows cannot be queried until

they are indexed. It does not provide data schema

support, declarative query language and cost-based

query optimizations. To optimize the execution of

queries a number of greedy and approximation

algorithms have been proposed earlier. But Kalnis et.

al. [11] stated that they do not scale well for

realistic workloads. They developed two greedy

algorithms which emphasize on finding the most

beneficial view in each step instead of finding most

promising query. Their extensive experiments

showed that their methods outperform the existing

one. Expert finding, another relevant space of

analysis is professional Finding. Instead of

documents the goal is to retrieve a hierarchal list of

specialists like an expert on a given topic. The

techniques used vary from customary retrieval

strategies just like the vector area model to

progressive techniques that use probabilistic and

language modelling approaches. Although our work

is conceptually connected, therein we have a

tendency to use data regarding Associate in tending

entity to rank entities, in contrast to professional

finding we are able to rank any form of entity that

narrow content is offered. Also, rather than making

an attempt to rank entities supported however well it

matches a topic, we have a tendency to specialize in

ranking entities supported however well a user’s

preferences are matched with opinions thereon

entity. Opinion Retrieval, Opinion retrieval was

initially explored in email form. The goal of opinion

retrieval is to find documents (primarily blog posts)

that have narrow content. The thought here is to

check the flexibility to find opinion expressing posts

as this is often essential in specialized searches like

web log search. An opinion retrieval system is

sometimes engineered on high of ordinary retrieval

models where relevant content is initially retrieved,

and so opinion analysis is completed on the

retrieved content to come solely narrow documents.

In distinction, our plan assumes that we have a

tendency to have already got the narrow content for

a given class of entities. The goal is so to rank the

entities within the order of chance that the entity

matches the user’s preferences. Wang et.al analysed

the LARA model without the pre-defined aspect

keywords Presented the hybrid generative Latent

Aspect Rating Analysis Model (LARAM)

containing both aspects modelling and rating

prediction, and demonstrated the model to

performed the hotel and product review dataset.

Ganesan et. al proposed the opinions summarization

model and it generates the concise abstract

summaries. Opinions graph produces abstractive

summaries of highly redundant opinions. First it

constructed a textual graph where the texts all

summarized and graphs three unique properties of

this graph tends to explore and score various sub

paths that resulted candidate abstractive summaries.

Ganesan & Zhai presented the rank based entities

based on the user’s preferences. It states the use of

several retrieval models and experimentally

demonstrates the two models and creates a bench

Received: February 17, 2017 129

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

mark quantitative evaluation of opinion-based entity

ranking.Group Lens Research Project at the

University of Minnesota has analyzed the movie

reviews, Movie Lens Dataset were used to establish

the Simple demographic info for the users (age,

gender, occupation, zip) and review text is not

available. Micropinion Generation Dataset (CNET)

was proposed by Ganesan & Zhai to solve the

optimization problem by heuristic algorithm and

produces the very concise phrases , at each phrase

(micro opinion) is a summary of an opinion .

3. Data analysis

Data analysis [11] is needed in connection with

query processing, to produce data summary

information in the form of rules or assertions that

allow semantic query optimisation or direct query

answering without consulting the data itself. The

purpose of the data analysis considered in this paper

is to improve the speed of answering queries on that

data. The summary information produced by

analyser can either answer a query without

consulting the data itself, or else modify the query to

a form the data server will be able to process more

quickly. Here this summary is used to identify

precise or imprecise and to assess whether it’s

relevant for the processing query or not. Previous

work in connection with meta-data discovery for use

in query processing has used a machine-learning

approach where the result of a query is treated as a

set of positive instances (a training set). Let us see

now the data analysis how far supportive for query

processing.

3.1 Analysis and assessment of imprecise inputs

Handling imprecise data and knowledge in the

semantic query processing is not a new issue. The

most well-known approaches include fuzzy

extensions, probabilistic extensions and possible

extensions. But in order to manage to adapt during

need, we should see the approach of supporting the

imprecise by storing the processed results and

uncovered error parameters i.e. imperfect error

coverage and reliability. Most approaches prefer

look up data and linked open data which support

user interaction for resolving imprecise but it’s not

fit for complete results. In order to leverage the

knowledge on the semantic engine requires efforts

in different areas. Firstly need to create the possible

imprecise knowledge base data sets. This is done by

certain set of code which support rule base and

implicit knowledge in order to foster a quick

adoption, automatic approaches. Second, there need

to be means to represent uncertain knowledge and

uncertainty degrees on the level of individual

axioms; Third, imprecise knowledge needs to be

processed in a useful manner. It is clearly not

enough to present the user a set of possible

statements with their degrees of precision.

Furthermore, using uncertain knowledge to derive

new facts will be essential. A crucial point in

creating and processing imprecise knowledge is the

assignment of useful degrees of uncertainty. If

uncertainty degrees are chosen badly, the entire

approach can be flawed. Once imprecise

information is discovered and created with

appropriate measures of imprecision, it needs to be

stored in order to allow for further processing. As

imprecision can occur both on the instance and the

schema level, mechanisms of an imprecise Semantic

should be able to cope with both, ideally in a

uniform way. Assigning useful degrees of

imprecision is a crucial point in creating and using

imprecise knowledge. The confidence degrees

delivered by a machine learning algorithm can be a

candidate, but are not necessarily the best measure.

In our case we are not chosen a model for imprecise

information, instead we deploy neighbour

description concept. Here by establishing a distance

among document descriptions, usually with some

vector metric, and retrieving all the information in

the neighbourhood of a request vector, the negative

effects of imprecisions in the description are

diminished. That is when a query specifies a value

of this attribute, all the tuples would be retrieved,

whose value for that attribute is in the

neighbourhood of the specified value [12].We

assumed here that descriptions are subject to

imprecision (which is ignored) and requests are

precise. The same solution applies when

descriptions are precise and requests are imprecise.

Such requests would be specified with apparent-

precision, and would be answered with the

neighbourhood of the request. Again, the negative

effects of imprecision in the request would be

moderated. We discuss this issue as follows.

3.1.1. Data distances

Data distances approach used to analyse and

assess the precision and imprecision among the

incoming data. An approach to imprecision that has

been applied successfully to both databases systems

and information retrieval systems handle imprecise

information with distance. The basic idea is to

model the real world with apparently-precise

descriptions, to define the notion of distance among

two descriptions, and thus to create neighbourhoods

of descriptions. Thus, any imprecision about a real-

Received: February 17, 2017 130

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

world object is ignored, and an apparently-precise

description of it is stored. It is then hoped that this

\negligence" would be compensated by having

somewhere in the neighbourhood of the true

description. When a request for information

specifies this true description, would be retrieved,

along with the other neighbours of the true

description. As an example, consider an information

retrieval system that describes documents with sets

of keywords [13, 14]. Such systems often represent

keyword sets with vectors: the dimension of each

vector is the number of possible keywords, and a

specific vector position is 1 if a particular keyword

is in the set and 0 otherwise. Often, there is

uncertainty whether a specific vector is the true

description of a given document. By establishing a

distance among document descriptions, usually with

some vector metric, and retrieving all the

information in the neighbourhood of a request

vector, the negative effects of imprecisions in the

description are diminished. As another example,

consider relational database systems. Such systems

describe objects with tuples, and often there is

uncertainty regarding the value of some attribute in

a given tuple. It is possible to [13] establish a

distance among the elements of the domain of this

attribute. Then, when a query specifies a value of

this attribute, all the tuples would be retrieved,

whose value for that attribute is in the

neighbourhood of the specified value. We assumed

here that descriptions are subject to imprecision

(which is ignored) and requests are precise. The

same solution applies when descriptions are precise

and requests are imprecise. Such requests would be

specified with apparent-precision, and would be

answered with the neighbourhood of the request.

3.1.2. Completeness and accuracy

In order to measure the accuracy and

completeness from imprecise can be viewed was

discussed. Imprecise information declarations are

made of the portions of the database that are prefect

models of the real world (and thereby the portions

that are possibly imperfect). Thus, like distances and

unlike disjunctive values, confidence

factors ,probabilistic values or possibilistic values ,

the descriptions themselves have no special features

for representing imperfection (i.e., they appear

perfect). However, meta-information provides the

distinction between perfect and imperfect

information. This approach interprets perfectness,

which it terms integrity, as a combination of

accuracy and completeness. A description is

accurate, if it includes only information that occurs

in the real world; a description is complete, if it

includes all the information that occurs in the real

world. Hence, a description has integrity, if it

includes the whole truth (completeness) and nothing

but the truth (accuracy). With this information

included in the database, the database system 14 can

qualify the perfectness of the answers it issues in

response to queries: each answer is accompanied by

statements that define the portions that are

guaranteed to be perfect. A technique is described in

[15] for inferring the views of individual answers

that are guaranteed to have integrity, from the views

of the entire database that are known to have

integrity. The notion of view completeness is similar

to an assumption that a certain view of the database

is closed world [16]. Also, open nulls [17] are

actually declarations of views that are non-complete.

The notion of accuracy is shown to be a

generalization of standard database integrity

constraints. Relative accuracy and completeness are

similar to the precision and recall measures used in

information retrieval [18], and are used to guide the

harmonization of inconsistent answers in a multi-

database environment.

3.2 Imprecision manipulations and processing

While most of the work on imperfect databases

has focused on description imperfection, transaction

and processing imperfection also have important

impact on the quality of the information delivered to

users. In this section we discuss briefly issues and

solutions that concern imperfections in the definition

of transformations (e.g., queries), in the definition of

modifications (e.g., updates or restructuring

operations), and in the processing of such

transactions.

3.2.1. Transformations

Transformations are operations that derive new

descriptions from stored descriptions. The most

frequent type of transformation is queries. Imperfect

queries may occur for different reasons. At times,

users of database systems have insufficient

knowledge of the database and database system they

are using: they might not have a clear idea of the

information available in the database (or how it is

organized), or they might not know how to

formulate their requests with the tools provided by

the system. Requests for information formulated by

such naive users’ exhibit a high level of

imperfection. They range from requests that cannot

be interpreted by the system (for reasons that are

either syntactical or semantically) to requests that do

not achieve correctly the intentions of the users (or

Received: February 17, 2017 131

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

achieve them only in part). Regardless of their level

of expertise, occasionally users may try to access a

database system with only a vague idea of the

information they seek. For example, a user may be

accessing an electronic catalogue for a product that

would be \interesting" or \exceptional".

Alternatively, users could have a clear idea of the

information they want, but might lack the

information necessary to specify it to the system. An

example is a user who wishes to look up the

meaning of a word in a dictionary, but cannot

provide its correct spelling. To summarize, we

distinguish among (1) insufficient knowledge of the

information available (or how it is organized), (2)

vagueness with respect to the information needed

(or how to denote it in terms acceptable to the

system), and (3) insufficient knowledge of the

system languages and tools that are used to

formulate requests. To address all these, the

approach has been to develop alternative access

tools. Browsers allow users to access information in

either situation discussed above [19-21]. Interactive

query constructors. Conduct user-system dialogues

to arrive at satisfactory formulations of user requests.

3.2.2. Processing

Even when a description D and a transformation

t are free of imperfections, the result t(D) may be

imperfect because of the methods used by the

system to process requests. In certain applications,

an information system might allocate only limited

computational resources to process a request. For

example, a recursive query to a genealogical

database to list all the ancestors of a specific

individual might be terminated after a predetermined

period of time (presumably the number of ancestors

retrieved by then would be sufficient. For example,

a statistical database system might introduce

perturbations into its answers deliberately, for

reasons of security. In each case, the answers would

exhibit imperfections. Finally, it is sometime

considered advantageous to sacrifice accuracy for

the sake of simplicity. Recent research on

intentional answers has focused on the generation of

abstract answers that describe the exhaustive

answers compactly, albeit imperfectly. For example,

a query to list the employees who earn over 50,000

might be answered simply and compactly

\engineers", even when the set of engineers and the

set of employees who earn over 50,000 are not

exactly the same (e.g., when the two sets overlap

substantially, or when one set contains the other).

4. Proposed work

With the increasing volume of data across the

large number of applications, the challenge is to

distribute the computations, responding to the query

along with the distribution of data. As per

Bobrowski (2011), relational database management

systems have grown overly complex, difficult to

manage, and are struggling today to take full

advantage of cloud computing technology. So, there

is need to reanalyse the design and processing of

relational database technologies and refine the

existing methods or develop new approaches

exclusively (how and what is the method) for the

cloud environment. Query processing and

optimization are very important and necessary

functions for any data base management system.

The function of query processing is to transform the

query written in a high-level language into a correct

and efficient execution plan expressed in a low-

level language. An important aspect of query

processing is query optimization. As there are many

equivalent transformations of the same high-level

query, the aim of query optimization is to choose an

efficient execution plan for processing a query. It

chooses the one that minimizes the resource usage

by using the information from the system catalog.

The set of query plans selected for examination is

formed by examining the possible access paths (e.g.,

index scan, sequential scan) and join algorithms. As

the volume of the data is increasing since the last

fifteen years at an exponential speed, research is

continually needed to improve the performance and

speed of data retrieval from the database

management system. There is need for such

database management system, which can process

highly complex queries and handle terabytes or

petabytes of data. Analytical applications are in

demand, so that proper planning and decisions can

be made from the data stored in the database. Most

query optimizers represent query plans as a tree of

"plan nodes". A plan node encapsulates a single

operation that is required to execute the query.

4.1 Optimizing queries

Memory requirement is determined by query

type. There are no simple and generic rules to

determine the correlation between the maximum

data size that a groups can process with its

aggregated memory size. It does not load entire

collection into memory, so the amount of available

memory doesn't limit the collection size that it can

handle. It builds crypt tables in memory, such as the

right-hand side table of a join or the result set of an

aggregation. In addition, memory as used in I/O

buffers, where the number of processor cores on the

Received: February 17, 2017 132

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

cluster and the speed of the scanners determine the

amount of buffering that is necessary in order to

keep all cores busy. For our m1.xlarge cluster in part

1 of our experiment, but when we performed single

table scan, we were able to process tables of 128 GB

and above. Because Impala didn’t need to cache the

entire result set of the query, it streamed the result

set back to the client. In contrast, when performing a

join operation, Impala may quickly use up a

cluster’s memory even if the aggregated table size is

smaller than the aggregated amount of memory. To

make full use of the available resources, it is

extremely important to optimize your queries. In this

section, we take Q3 used to illustrate some of the

optimization techniques.

4.1.1. Parametric query optimization

Classical query optimization associates each

query plan with one scalar cost value. Parametric

query optimization assumes that query plan cost

depends on parameters whose values are unknown

at optimization time. Such parameters can for

instance represent the selectivity of query predicates

that are not fully specified at optimization time but

will be provided at execution time. Parametric query

optimization therefore associates each query plan

with a cost function that maps from a multi-

dimensional parameter space to a one-dimensional

cost space.

4.1.2. Multi-objective query optimization

There are often other cost metrics in addition to

execution time that are relevant to compare query

plans. In a cloud computing scenario for instance,

one should compare query plans not only in terms of

how much time they take to execute but also in

terms of how much money their execution costs. Or

in the context of approximate query optimization, it

is possible to execute query plans on randomly

selected samples of the input data in order to obtain

approximate results with reduced execution

overhead. In such cases, alternative query plans

must be compared in terms of their execution time

but also in terms of the precision or reliability of the

data they generate .Multi-objective query

optimization models the cost of a query plan as a

cost vector where each vector component represents

cost according to a different cost metric. Classical

query optimization can be considered as a special

case of multi-objective query optimization where the

dimension of the cost space (i.e., the number of cost

vector components) is one. Different cost metrics

might conflict with each other (e.g., there might be

one plan with minimal execution time and a

different plan with minimal monetary execution fees

in a cloud computing scenario). Therefore, the goal

of optimization cannot be to find a query plan that

minimizes all cost metrics but must be to find a

query plan that realizes the best compromise

between different cost metrics. What the best

compromise is depends on user preferences (e.g.,

some users might prefer a cheaper plan while others

prefer a faster plan in a cloud scenario). The goal of

optimization is therefore either to find the best query

plan based on some specification of user preferences

provided as input to the optimizer (e.g., users can

define weights between different cost metrics to

express relative importance or define hard cost

bounds on certain metrics) or to generate an

approximation of the set of Pareto-optimal query

plans (i.e., plans such that no other plan has better

cost according to all metrics) such that the user can

select the preferred cost tradeoff out of that plan set.

4.1.3. Multi-objective parametric query optimization

Multi-objective parametric query optimization

generalizes parametric and multi-objective query

optimization. Plans are compared according to

multiple cost metrics and plan costs may depend on

parameters whose values are unknown at

optimization time. The cost of a query plan is

therefore modelled as a function from a multi-

dimensional parameter space to a multi-dimensional

cost space. The goal of optimization is to generate

the set of query plans that can be optimal for each

possible combination of parameter values and user

preferences.

4.2 Problematic query

explain DELETE FROM xxxxx WHERE aggr_id =

3000010;

+----+-------------+---------------------------+------+-----

| id | select_type | table | type | possible_keys | key |

key_len | ref | rows | Extra |

+----+-------------+---------------------------+------+-----

| 1 | SIMPLE | xxxxx ALL | NULL | NULL |

NULL | NULL | 46611048 | Using where |

+----+-------------+---------------------------+------+-----

1 row in set (0.05 sec)

Figure.1 Sample query

4.2.1. Snippet data

In order to align the real-world values to

colonize with arbitrarily produced, the outline of the

data generated same process in the form of sample

data, and here we pasted few of them. The first

sections describe that the total no of head books/

Received: February 17, 2017 133

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

books records. It has education, body-mind-spirit,

transportation, family relationship, travel, law,

literary criticism.

$ head books/books

0|1-45812-668-3|EDUCATION|1986-06-

14|Shinchosha|45.75

1|9-69091-140-1|BODY-MIND-SPIRIT|1983-07-

29|Lefebvre-Sarrut|99.91

2|3-73425-809-9|TRANSPORTATION|1996-07-

08|Mondadori|99.45

3|8-23483-356-2|FAMILY-RELATIONSHIPS|2002-08-

20|Lefebvre-Sarrut|227.39

4|3-58984-308-3|POETRY|1974-06-13|ESKIMO|234.99

5|2-34120-729-8|TRAVEL|2004-06-30|cargage|120.99

6|0-38870-277-1|TRAVEL|2013-05-26|Education Group

|173.99

7|8-74275-772-8|LAW|2012-05-01|Holtzbrinck|182.99

8|4-41109-927-4|LITERARY-CRITICISM|1986-04-

06|LMA Group|82.99
9|8-45276-479-4|TRAVEL|1998-07-04|Lefebvre-

Sarrut|80.99

$ head transactions/transactions

0|360677155|84060207|4|2010-03-24 10:24:22

1|228662770|136084430|5|2009-07-03 14:53:09

2|355529188|26348618|9|2009-09-13 11:53:26

3|1729168|20837134|5|2006-01-05 19:31:19

4|196166644|99142444|19|2007-01-02 15:07:38

5|43026573|479157832|17|2010-04-14 16:42:29

6|306402023|356688712|12|2010-05-24 22:15:54

7|359871959|312932516|31|2000-04-03 11:06:38

8|379787207|265709742|45|2013-09-09 06:01:06

9|144155611|137684093|11|2010-06-06 17:07:07

Figure.2 Sample tested output

Table 1. Sample tested output 3

Instance type Processor Architecture vCPUs ECU Memory (GiB) Internal storage (GB)

M1.xsmall 64-bit 4 8 15 4x420

Figure.3 Existing system performance status Figure.4 Existing system performance status

Table 2. Sample tested output 3

Instance type Processor Architecture vCPUs ECU Memory (GiB) Internal storage (GB)

m2.4x large 64-bit 8 26 8 2x840

Figure.5 Proposed system performance status Figure.6 Proposed system performance status

0

100

200

300

400

500

600

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Table Size 3GB

Execution
time

Query size

0

100

200

300

400

500

600

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Table Size 6GB

Execution
time

Query size

0

200

400

600

800

1000

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Table Size 4GB

Execution time

Query size

0

200

400

600

800

1000

1200

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Table Size 8GB

Execution time

Query size

Received: February 17, 2017 134

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

5. Performance test results

During this experimental results were attained

on various group of json data. Where as in amazon

we use x1.large instance with ec2 instance to be

installed as shown in Table 1. By comparing the

query performance against the two metrics of the

query execution time and output. From this Fig 3

and Fig 4 stated that y axis represents the average

execution time has been measured using the time

command from various trails. The missing data

represented the unsuccessful of first approach due to

impact of out-of-memory problematic scenario.

Nonetheless, when the input data set is large enough

such that the framework overhead is negligible

compared to overall query time, initially tested

output got only about 3 to 10 times faster. The

second one was performed against this approach

was tabulated in Table 2, it was not mutable with

modified optimization technique. The goal of

optimization is usually to generate all query plans

that could be optimal for any of the possible

parameter value combinations. This yields a set of

relevant query plans. At run time, the best plan is

selected out of that set once the true parameter

values become known. The advantage of Multi-

objective parametric query optimization is that

optimization (which is in general a very expensive

operation) is avoided at run time.

Figures 5 and 6 show goal of optimization is

therefore either to find the best query plan based on

some specification of user preferences provided as

input to the optimizer (e.g., users can define weights

between different cost metrics to express relative

importance or define hard cost bounds on certain

metrics) or to generate an approximation of the set

of optimal query plans (i.e., plans such that no other

plan has better cost according to all metrics) such

that the user can select the preferred cost trade off

out of that plan set.

6. Conclusion

Commercial database systems have been

relatively slow to incorporate imprecise capabilities.

Another hindrance for database system with

imprecision capabilities may lie in the expectation

of users. Users of database system have come to

expect their queries to be interpreted unambiguously

and answered with complete accuracy. Our works

discussed in this paper provide solution for

this .That is by assessing the user imprecise queries

and reutilising for future use by cooperative

answering aspect. (Where information is considered

relevant to the queries delivered along with, or in

place of, the standard answer) .Further the article

presents an idea of gaining imprecise and

incomplete information by novel methodologies. On

behalf of performance issue optimization was

deployed for parametric queries, multiple queries,

multi objective queries in cloud environments. As

conclusion our work reach the level of significance

for daily database user and as future we extended

the work in design of integrating the stand alone

models for information retrieval which support the

imprecise query processing system as a single one

with AI mechanism and experiment on Big data

over cloud environments as research .

References

[1] P. Mohankumar and J. Vaideeswaran,

“Assessment on Precision-imprecision

Essentials in Semantic Query Processing”,

Indian Journal of Science and Technology, Vol.

8 No. 13, pp.50-55, 2015

[2] P. Godfrey and J. Gryz, “Answering Queries by

Semantic Caches”, Database and Expert Sys-

tems Applications, Florence, Italy, pp.485–498,

1999.

[3] A. Vancea and B. Stiller, “Answering Queries

Using Cooperative Semantic Caching,” In: Proc.

of IFIP International Conference on

Autonomous Infrastructure, Management and

Security, pp 56-69, 2009.

[4] J. Colquhoun, P,” A Peer-to-Peer Server based

on BitTorrent”, Technical Report No. 1089,

Newcastle University, pp. 1-28, 2008.

[5] M. J. Franklin and D. Srivastava, “Semantic

Data Caching and replacement”, 22th

International Conference on VLDB, pp. 330-341,

1996.

[6] Y. Tao, G. Liu, and J. Mottok, “Georg Hagel

Ranking task activity in teaching software

engineering”, IEEE Global Engineering

Educations, pp. 1023 - 1027, 2016

[7] D S Guru,N Vinay Kumar,” Novel feature

ranking criteria for interval valued feature

selection”, International Conference on

Advances in Computing, Communications and

Informatics” , pp. 149 - 155, 2016 .

[8] J. Dean and S.Ghemawat, “MapReduce:

Simplified Data Processing on Large Clusters”

on To appear in OSDI 2004, pp1-31, Google,

Inc.

[9] F. Li, B.C. Ooi, M. Tamer, and S. Wu,

“Distributed Data Management Using

Received: February 17, 2017 135

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.14

MapReduce”, ACM Computing Surveys, Vol. 46,

No. 3, pp. 31:1-31:42, 2014.

[10] J. Robinson, Universityof Essex, “Data

Analysis for Query Processing, IDA report 1997.

[11] A. Motro, “VAGUE A user interface to

relational databases that permits vague

queries”, ACM Transactions on Information

Systems, Vol.6, No.3, pp. 187-214, 1988.

[12] H. R. Turtle and W. B. Croft, “Uncertainty in

information retrieval systems”, In: Proc. of the

Workshop on Uncertainty Management in

Information Systems, pp. 111-137, 1992.

[13] C. J. van Rijsbergen, Information Retrieval,

Butterworths, pp. 21-30, press London, 1979.

[14] A. Motro, “Integrity = validity +

completeness ”, ACM Transactions on Database

Systems, Vol.14, No. 4, pp. 480-502, 1989.

[15] R. Reiter. On closed world data bases. In

Logic and Databases, pp 55-76. Press, 1978.

[16] G. Gottlob and R. Zicari, “Closed world

assumption opened through null values”, In:

Proc. of the 14thInternational Conference on

Very Large Data Bases, pp. 50-61, 1988.

[17] G. Salton and M. J. McGill, “Introduction to

Modern Information Retrieval”, McGraw-Hill,

NewYork, pp. 336-1337, 2004

[18] A. D'Atri, A. Motro, and L. Tarantino.

“ViewFinder”, Technical report, George Mason

University, pp.1-18, 1992.

[19] A. Motro, “BAROQUE: A browser for

relational databases”, ACM23 on Information

Systems, Vol.4, No.2, pp. 164-181, 1986.

[20] T. R. Rogers and R. G. G. Cattell, “Object-

oriented database user interfaces”, Technical

report, Sun Microsystems, 1987.

[21] P. Kalni and D. Papadias, “Multi-query

optimization for on-line analytical processing”,

Information Systems, Vol. 28, No. 5, pp. 457-

473, 2003.

