We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Classification and immunotherapy assessment of lung adenocarcinoma based on coagulation-related genes

    Yi Zhou

    Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China

    ,
    Wangju Fan

    Department of Thoracic Cardiovascular Surgery, The People's Hospital of Wuzhou, Wuzhou City, 543000, China

    ,
    Jian Zhou

    Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China

    ,
    Shengjie Zhong

    Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China

    ,
    Jun Yang

    Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China

    ,
    Yanxia Zhong

    Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China

    &
    Guoxiong Huang

    *Author for correspondence: Tel.: +86 191 2737 9244;

    E-mail Address: gxionghuang@163.com

    Department of Thoracic Cardiovascular Surgery, The People's Hospital of Wuzhou, Wuzhou City, 543000, China

    Published Online:https://doi.org/10.2217/pme-2023-0094

    Introduction: This study on lung adenocarcinoma (LUAD), a common lung cancer subtype with high mortality. Aims: This study focuses on how tumor cell interactions affect immunotherapy responsiveness. Methods: Using public databases, we used non-negative matrix factorization clustering method, ssGSEA, CIBERSORT algorithm, immunophenotype score, survival analysis, protein–protein interaction network method to analyze gene expression data and coagulation-related genes. Results: We divided LUAD patients into three coagulation-related subgroups with varying immune characteristics and survival rates. A cluster of three patients, having the highest immune infiltration and survival rate, also showed the most potential for immunotherapy. We identified five key genes influencing patient survival using a protein–protein interaction network. Conclusion: This research offers valuable insights for forecasting prognosis and immunotherapy responsiveness in LUAD patients, helping to inform clinical treatment strategies.

    References

    • 1. Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
    • 2. Mulder FI, Horvath-Puho E, Van Es N et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood 137(14), 1959–1969 (2021).
    • 3. Prandoni P, Lensing AW, Piccioli A et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 100(10), 3484–3488 (2002).
    • 4. Chew HK, Davies AM, Wun T, Harvey D, Zhou H, White RH. The incidence of venous thromboembolism among patients with primary lung cancer. J. Thromb. Haemost. 6(4), 601–608 (2008).
    • 5. Ruiz-Artacho P, Lecumberri R, Trujillo-Santos J et al. Cancer histology and natural history of patients with lung cancer and venous thromboembolism. Cancers (Basel) 14(17), 4127 (2022).
    • 6. Blann AD, Lip GY. Venous thromboembolism. BMJ 332(7535), 215–219 (2006).
    • 7. Fernandes CJ, Morinaga LTK, Alves JL Jr et al. Cancer-associated thrombosis: the when, how and why. Eur. Respir. Rev. 28(151), (2019).
    • 8. Magnus N, Garnier D, Meehan B et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc. Natl Acad. Sci. USA 111(9), 3544–3549 (2014).
    • 9. Monreal M, Lensing AW, Prins MH et al. Screening for occult cancer in patients with acute deep vein thrombosis or pulmonary embolism. J. Thromb. Haemost. 2(6), 876–881 (2004).
    • 10. Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: a potential role in the coagulation cascade, diagnosis and prognosis. Int. J. Oncol. 54(5), 1719–1733 (2019).
    • 11. Shaker H, Bundred NJ, Landberg G et al. Breast cancer stromal clotting activation (tissue factor and thrombin): a pre-invasive phenomena that is prognostic in invasion. Cancer Med. 9(5), 1768–1778 (2020).
    • 12. Desai C, Koupenova M, Machlus KR, Sen Gupta A. Beyond the thrombus: platelet-inspired nanomedicine approaches in inflammation, immune response, and cancer. J. Thromb. Haemost. 20(7), 1523–1534 (2022).
    • 13. Stoiber D, Assinger A. Platelet–leukocyte interplay in cancer development and progression. Cells 9(4), 855 (2020).
    • 14. Agrawal S, Ganguly S, Hajian P, Cao JN, Agrawal A. PDGF upregulates CLEC-2 to induce T regulatory cells. Oncotarget 6(30), 28621–28632 (2015).
    • 15. NIH. National Cancer Institute. National GDC Portal. Harmonized Cancer Datasets. Genomic Data Commons Data Portal. https://portal.gdc.cancer.gov/
    • 16. NCBI.Gene Expression Omnibus (GEO). www.ncbi.nlm.nih.gov/geo/
    • 17. He Q, Yang J, Jin Y. Immune infiltration and clinical significance analyses of the coagulation-related genes in hepatocellular carcinoma. Brief. Bioinform. 23(4), (2022).
    • 18. KEGG: Kyoto Encyclopedia of Genes and Genomes. www.genome.jp/kegg/
    • 19. Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 26(1), 139–140 (2010).
    • 20. STRING.Protein-Protein Interaction Networks Functional Enrichment Analysis. https://cn.string-db.org/cgi/input.pl
    • 21. Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 14, 244 (2013).
    • 22. Skidmore ZL, Wagner AH, Lesurf R et al. GenVisR: genomic visualizations in R. Bioinformatics (Oxford, England) 32(19), 3012–3014 (2016).
    • 23. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5), 284–287 (2012).
    • 24. Terry M. Therneau PMG. Modeling Survival Data: Extending the Cox Model. Springer, NY, USA (2000).
    • 25. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).
    • 26. Yoshihara K, Shahmoradgoli M, Martinez E et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).
    • 27. Liu J, Shen H, Gu W et al. Prediction of prognosis, immunogenicity and efficacy of immunotherapy based on glutamine metabolism in lung adenocarcinoma. Front. Immunol. 13, 960738 (2022).
    • 28. TCIA. The Cancer Immunome Atlas. https://tcia.at
    • 29. TIDE. http://tide.dfci.harvard.edu/login/
    • 30. Chew HK, Wun T, Harvey D, Zhou H, White RH. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 166(4), 458–464 (2006).
    • 31. Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood 122(10), 1712–1723 (2013).
    • 32. Mahajan A, Brunson A, Adesina O, Keegan THM, Wun T. The incidence of cancer-associated thrombosis is increasing over time. Blood Adv. 6(1), 307–320 (2022).
    • 33. Tsubata Y, Hotta T, Hamai K et al. A new risk-assessment tool for venous thromboembolism in advanced lung cancer: a prospective, observational study. J. Hematol. Oncol. 15(1), 40 (2022).
    • 34. Dvorak HF. Tumors: wounds that do not heal-a historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. Semin. Thromb. Hemost. 45(6), 576–592 (2019).
    • 35. Burzynski LC, Humphry M, Pyrillou K et al. The coagulation and immune systems are directly linked through the activation of interleukin-1alpha by thrombin. Immunity 50(4), 1033–1042; e1036 (2019).
    • 36. Esmon CT. Inflammation and thrombosis. J. Thromb. Haemost. 1(7), 1343–1348 (2003).
    • 37. Tsukamoto J, Monteiro M, Vale S et al. Thromboembolic events related to treatment with checkpoint inhibitors: report of two cases. Case Rep. Oncol. 11(3), 648–653 (2018).
    • 38. Boutros C, Scoazec JY, Mateus C, Routier E, Roy S, Robert C. Arterial thrombosis and anti-PD-1 blockade. Eur. J. Cancer 91, 164–166 (2018).
    • 39. Horio Y, Takamatsu K, Tamanoi D et al. Trousseau's syndrome triggered by an immune checkpoint blockade in a non-small cell lung cancer patient. Eur. J. Immunol. 48(10), 1764–1767 (2018).
    • 40. Holmes VA. Changes in haemostasis during normal pregnancy: does homocysteine play a role in maintaining homeostasis? Proc. Nutr. Soc. 62(2), 479–493 (2003).
    • 41. Xu D, Xu R, He L et al. Comparison of pathogenic mechanisms underlying single and recurrent venous thromboembolism based on gene expression profiling. Ann. Vasc. Surg. 36, 252–259 (2016).
    • 42. Wang Z, Lu Z, Lin S et al. Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity 55(6), 1067–1081; e1068 (2022).
    • 43. Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a protein with multiple therapeutic functions. Curr. Atheroscler. Rep. 23(3), 11 (2021).
    • 44. Sun Y, Ren D, Yang C et al. TRIM15 promotes the invasion and metastasis of pancreatic cancer cells by mediating APOA1 ubiquitination and degradation. Biochim. Biophys. Acta Mol. Basis Dis. 1867(11), 166213 (2021).
    • 45. Ochieng J, Nangami G, Sakwe A et al. Impact of fetuin-A (AHSG) on tumor progression and type 2 diabetes. Int. J. Mol. Sci. 19(8), (2018).
    • 46. Niu L, Song X, Wang N, Xue L, Song X, Xie L. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci. 110(1), 433–442 (2019).
    • 47. Borgquist S, Butt T, Almgren P et al. Apolipoproteins, lipids and risk of cancer. Int. J. Cancer 138(11), 2648–2656 (2016).
    • 48. Batsuli G, Kouides P. Rare coagulation factor deficiencies (factors VII, X, V, and II). Hematol. Oncol. Clin. North Am. 35(6), 1181–1196 (2021).
    • 49. Bayleyegn B, Adane T, Getawa S, Aynalem M, Kifle ZD. Coagulation parameters in lung cancer patients: a systematic review and meta-analysis. J. Clin. Lab. Anal. 36(7), e24550 (2022).