We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics

    Hassan Fattahi

    Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium

    Polymer research laboratory, Department of Organic & Biochemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd, Tabriz, Iran

    ,
    Sophie Laurent

    Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium

    ,
    Fujun Liu

    Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium

    ,
    Nasser Arsalani

    Polymer research laboratory, Department of Organic & Biochemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd, Tabriz, Iran

    ,
    Luce Vander Elst

    Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium

    &
    Published Online:https://doi.org/10.2217/nnm.11.14

    In the emerging field of molecular and cellular imaging, flexible strategies to synthesize multimodal contrast agents with targeting ligands are required. Liposomes have the ability to combine with a large variety of nanomaterials, including superparamagnetic iron oxide nanoparticles, to form magnetoliposomes (MLs). MLs can be used as highly efficient MRI contrast agents. Owing to their high flexibility, MLs can be associated with other imaging modality probes to be used as multimodal contrast agents. By using a thermosensitive lipid bilayer in the ML structure, these biocompatible systems offer many possibilities for targeting and delivering therapeutic agents for ‘theragnostics’, a coincident therapy and diagnosis strategy. This article deals with the fast-growing field of MLs as biomedical diagnostic tools. Different kinds of MLs, their preparation methods, as well as their surface modification with different imaging probes, are discussed. ML applications as multimodal contrast agents and in theragnostics are reviewed. Some important issues for the biomedical uses of magnetic liposomes, such as toxicity, are summarized.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Molecular Imaging: Principals and Practice. Weissleder R, Ross BD, Rehemetulla A, Gambhir SG (Eds). People’s Medical Publishing House, USA (2010).
    • Zarbin MA, Montemagno C, Leary JF, Ritch R: Nanomedicine in ophthalmology: the new frontier. Am J. Ophthalmol.150,144–162 (2010).
    • Buxton DB: Nanomedicine for the management of lung and blood diseases. Nanomedicine (Lond.)4,331–339 (2009).
    • Godin B, Sakamoto JH, Serda RE et al.: Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci.31,199–205 (2010).
    • McCarron PA, Faheem AM: Nanomedicine-based cancer targeting: a new weapon in an old war. Nanomedicine (Lond).5,3–5 (2010).
    • Laurent S, Forge D, Port M et al.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.108,2064–2110 (2008).
    • Bulte JWM, Kraitchman DL: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed.17,484–499 (2004).
    • Terreno E, Castelli DD, Viale A et al.: Challenges for molecular magnetic resonance imaging. Chem. Rev.110,3019–3042 (2010).
    • Gupta AK, Gupta M: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials26,3995–4021 (2005).
    • 10  Zhang L, Xue H, Gao C et al.: Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-L-alanine linkages. Biomaterials31,6582–6588 (2010).
    • 11  Bulte JWM, Douglas T, Witwer B et al.: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol.19,1141–1147 (2001).
    • 12  Soenen SJH, Hodenius M, Schmitz-Rode T, De Cuyper M: Protein-stabilized magnetic fluids. J. Magn. Magn. Mater.320,32–39 (2008).
    • 13  De Cuyper M, Hodenius M, Ivanova G et al.: Specific heating power of fatty acid and phospholipid stabilized magnetic fluids in an alternating magnetic field. J. Phys. Cond. Matter.20,204131.1–204131.5 (2008).
    • 14  Mulder WJM, Strijkers GJ, Tilborg GAF, Griffioen AW, Nicolay K: Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed.19,142–164 (2006).▪▪ Overviews different lipidic nanoparticles, conjugation strategies and application in the field of cellular and molecular MRI.
    • 15  De Cuyper M, Joniau M: Magnetoliposomes: formation and structural characterization. Eur. Biophys. J.15,311–319 (1988).
    • 16  Jiao Y, Peng ZH, Zhang JY, Qin J, Zhong CP: Liposome-mediated transfer can improve the efficacy of islet labeling with superparamagnetic iron oxide. Transplant. Proc.40,3615–3618 (2008).
    • 17  Yu Y, Anthony SM, Bae SC et al.: Biomolecular science of liposome–nanoparticle constructs. Mol. Cryst. Liq. Cryst.507,18–25 (2009).
    • 18  Soenen SJH, Hodenius M, De Cuyper M: Magnetoliposome: innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine4,177–191 (2009).▪▪ Comprehensive review regarding magnetoliposomes and their use in several biomedical applications.
    • 19  Al-Jamal W, Kostarelos K: Liposome–nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine (Lond).2,85–98 (2007).▪ Liposome–nanoparticle hybrid systems are described, both in terms of their structural characteristics and their potential as diagnostic and therapeutic multimodality agents.
    • 20  Torchilin VP: Recent approaches to intracellular delivery of drugs and DNA and onganelle targeting. Annu. Rev. Biomed. Eng.8,343–375 (2006).
    • 21  Lawrence MJ, Rees GD: Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev.45,89–121 (2000).
    • 22  Torchilin VP: PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev.54,235–252 (2002).
    • 23  Torchilin VP: Surface-modified liposomes in γ- and MR-imaging. Adv. Drug Deliv. Rev.24,301–313 (1997).
    • 24  Margolis LB, Namiot VA, Kljukin LM: Magnetoliposomes: another principle of cell sorting. Biochim. Biophys. Acta735,193–195 (1983).
    • 25  Sahoo Y, Pizem H, Fried T et al.: Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir17,7907–7911 (2001).
    • 26  De Cuyper M, Caluwier D, Baert J, Cocquyt J, Van der Meeren P: A successful strategy for the production of cationic magnetoliposomes. Z. Phys. Chem.220,133–141 (2006).
    • 27  Soenen SJH, Baert J, De Cuyper M: Optimal conditions for labeling of 3T3 fibroblasts with magnetoliposomes without affecting cellular viability. ChemBioChem8,2067–2077 (2007).
    • 28  Martina MS, Fortin JP, Menager C et al.: Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J. Am. Chem. Soc.127,10676–10685 (2005).
    • 29  Sabate R, Barnadas-Rodriguez R, Callejas-Fernandez J, Hidalgo-Alvarez R, Estelrich J: Preparation and characterization of extruded magnetoliposomes. Int. J. Pharm.347,156–162 (2008).
    • 30  Janib SM, Moses AS, MacKay JA: Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Del. Rev.62,1052–1063 (2010).
    • 31  Fang C, Zhang M: Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine. J. Control. Release89,47–55 (2010).
    • 32  Chen Y, Bose A, Bothun GD: Controlled release from bilayer decorated magnetoliposomes via electromagnetic heating. ACS Nano.4,3215–3221 (2010).
    • 33  Rinck PA: Magnetic Resonance in Medicine. Wiley-Blackwell, Berlin, Germany (2003).
    • 34  Laurent S, Vander Elst L, Roch A, Muller RN: Structure, synthesis and characterization of contrast agents for magnetic resonance molecular imaging. In: NMR-MRI, µSR and Mössbauer Spectroscopies in Molecular Magnets. Carretta P, Lascialfari A (Eds). Springer, Milano, Italy, 71–87 (2007).
    • 35  Geraldes CFGC, Laurent S: Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Med. Mol. Imaging4,1–23 (2009).
    • 36  The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Merbach AE, Toth E (Eds). John Wiley, England, UK (2001).
    • 37  Waters EA, Wickline SA: Contrast agents for MRI. Basic Res. Cardiol.103,114–121 (2008).
    • 38  Yan G-P, Robinson L, Hogg P: Magnetic resonance imaging contrast agents: overview and perspectives. Radiography13,E5–E19 (2007).
    • 39  Terreno E, Delli Castelli D, Aime S: Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. Contrast Media Mol. Imaging5,78–98 (2010).
    • 40  Viswanathan S, Kovacs Z, Ratnakar SJ, Green KN, Sherry AD: Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev.110,2960–3018 (2010).
    • 41  Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN: Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir23,4583–4588 (2007).
    • 42  Stuber M, Gilson WD, Schär M et al.: Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magnet. Reson. Med.58,1072–1077 (2007).
    • 43  Senpan A, Caruthers SD, Rhee I et al.: Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano.3,3917–3926 (2009).
    • 44  Mornet S, Portier J, Doguet E: A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater.293,127–134 (2005).
    • 45  Mornet S, Vasseur S, Grasset F, Guguet E: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem.14,2161–2175 (2004).
    • 46  Arbab AS, Bashaw LA, Miller BR et al.: Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology229,838–846 (2003).
    • 47  Bulte JW, De Cuyper M: Magnetoliposomes as contrast agents. Methods Enzymol.373,175–198 (2003).
    • 48  Yang C, Rait A, Pirollo KF et al.: Nanoimmunoliposome delivery of superparamagnetic iron oxide markedly enhances targeting and uptake in human cancer cells in vitro and in vivo. Nanomedicine4,318–329 (2008).
    • 49  Fortin-Ripoche J-P, Martina MS, Gazeau F et al.: Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology239,415–424 (2006).
    • 50  Bulte JWM, De Cuyper M, Despres D, Frank JA: Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent. J. Magn. Magn. Mater.194,204–209 (1999).
    • 51  De Cuyper M, Soenen SJH, Coenegrachts K, Beek L T: Surface functionalization of magnetoliposomes in view of improving iron oxide-based magnetic resonance imaging contrast agents: anchoring of gadolinium ions to a lipophilic chelate. Anal. Biochem.367,266–273 (2007).
    • 52  Soenen SJH, Desender L, De Cuyper M: Complexation of gadolinium(III) ions on top of nanometer-sized magnetoliposomes. Int. J. Environ. An. Ch.87,783–796 (2007).
    • 53  Zaidi H, Prasad R: Advances in multimodality molecular imaging. J. Med. Phys.34,122–128 (2009).
    • 54  Weissleder R, Pittet MJ: Imaging in the era of molecular oncology. Nature452,580–589 (2008).
    • 55  Soenen SJH, Vercauteren D, Braeckmans K, Noppe W, De Smedt S, De Cuyper M: Stable long-term intracellular labelling with fluorescently tagged cationic magnetoliposomes. ChemBioChem10,257–267 (2009).▪ Describes the production of different types of fluorescently tagged magnetoliposomes.
    • 56  Van Tilborg GA, Mulder WJ, Deckers N et al.: Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis. Bioconjug. Chem.17,741–749 (2006).
    • 57  Plassat V, Martina MS, Barratt G, Menager C, Lesieur S: Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution. Int. J. Pharm.344,118–127 (2007).
    • 58  Martina MS, Wilhelm C, Lesieur S: The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by human prostatic adenocarcinoma cells. Biomaterials29,4137–4145 (2008).
    • 59  Fang C, Zhang M: Nanoparticle-based theragnostics: Integrating diagnostic and therapeutic potentials in nanomedicine. J. Control. Release146,2–5 (2010).
    • 60  Ozdemir V, Williams-Jones B, Glatt SJ et al.: Shifting emphasis from pharmacogenomics to theragnostics. Nat. Biotechnol.24,942–946 (2006).
    • 61  Maeng JH, Lee D-H, Jung KH et al.: Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials31,4995–5006 (2010).
    • 62  Weissleder R: Molecular imaging in cancer. Science312,1168–1171 (2006).
    • 63  Kim K, Kim JH, Park H et al.: Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J. Control. Release146,219–227 (2010).
    • 64  Veiseh O, Gunn JW, Zhang M: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Del. Rev.62,284–304 (2010).
    • 65  Torchilin V: Multifunctional and stimuli-sensitive pharmaceutical nanocarriers, Eur. J. Pherm. Biopharm.71,431–444 (2009).
    • 66  Bharali DJ, Mousa SA: Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol. Therapeut.128,324–335 (2010).
    • 67  Shubayev VI, Pisanic TR, Jin S: Magnetic nanoparticles for theragnostics. Adv. Drug Del. Rev.61,467–477 (2010).
    • 68  Pradhan P, Giri J, Banerjee R, Bellarea J, Bahadur D: Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. J. Magn. Magn. Mater.311,208–215 (2007).
    • 69  Soenen SJH, Cocquyt J, Defour L, Saveyn P, Van der Meeren, De Cuyper M: Design and development of magnetoliposome-based theragnostics. Mater. Manuf. Process.23,611–614 (2008).
    • 70  Wang M, Thanou M: Targeting nanoparticles to cancer. Pharmacol. Res.62,90–99 (2010).
    • 71  McCarthy JR, Weissleder R: Multifunctional magnetic nanoparticles for targeted imaging and therapy, Adv. Drug Del. Rev.60,1241–1251 (2008).
    • 72  Tai LA, Tsai PJ, Wang YC et al.: Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology20,135101–135110 (2009).
    • 73  Chen Y, Bose A, Bothun GD: Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano.4,3215–3221 (2010).
    • 74  Pradhan P, Giri J, Rieken F et al.: Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release142,108–121 (2010).
    • 75  Jain TK, Richey J, Strand M, Dimitrijevic S, Flask CA, Labhasetwar V: Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials29,4012–4021 (2008).
    • 76  Jain TK, Foy SP, Erokwu B, Dimitrijevic S, Flask CA, Labhasetwar V: Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials30,6748–6756 (2009).
    • 77  Lee H, Yu MK, Park S et al.: Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc.129,12739–12745 (2007).
    • 78  Yu MK, Jeong YY, Park J et al.: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed.47,5362–5365 (2008).
    • 79  Sahiner N, Ilgin P: Multiresponsive polymeric particles with tunable morphology and properties based on acrylonitrile (AN) and 4-vinylpyridine (4-VP). Polymer51,3156–3163 (2010).
    • 80  Huh MS, Lee S-Y, Park S et al.: Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J. Control. Release144,134–143 (2010).
    • 81  Kim K, Kim JH, Park H et al.: Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J. Control. Release146,219–227 (2010).
    • 82  Yang X, Grailer JJ, Rowland IJ et al.: Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials31,9065–9073 (2010).
    • 83  Nanotoxicity: From In Vivo and In Vitro Models to Health Risks. Sahu SC, Casciano DA (Eds). John Wiley, UK (2009).
    • 84  Soenen SJH, De Cuyper M: Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol. Imaging4,207–219 (2009).▪ Discusses the cytotoxicity assessment of iron oxide nanoparticles by different methods on magnetoliposome model.
    • 85  Garcia VAP, Lacava LM, Kuckelhaus S et al.: Magnetoliposome evaluation using cytometry and micronucleus test. Eur. Cells Mater.3,154–155 (2002).
    • 86  Lacava ZGM, Garcia VAP, Lacava LM et al.: Biodistribution and biocompatibility investigation in magnetoliposome treated mice. Spectroscopy18,597–603 (2004).
    • 87  Lv H, Zhang S, Wang B, Cui S, Yan J: Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release114,100–109 (2006).
    • 88  Soenen SJH, Himmelreich U, Nuytten N, Pisanic TR, Ferrari A, De Cuyper M: Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small6,2136–2145 (2010).
    • 89  Slotkin JR, Cahill KS, Tharin SA, Shapiro EM: Cellular magnetic resonance imaging: nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics4,428–433 (2007).
    • 90  Li P, Li D, Zhang L, Li G, Wang E: Cationic lipid bilayer coated gold nanoparticle-mediated transfection of mammalian cells. Biomaterials29,3617–3624 (2008).
    • 91  Soenen SJH, Brisson A, De Cuyper M: Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials30,3691–701 (2009)
    • 92  Soenen SJ, Illyes E, Vercauteren D et al.: The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials30,6803–6813 (2009).
    • 93  Soenen SJH, Himmelreich U, Nuytten N, De Cuyper M: Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labeling. Biomaterials32,195–205 (2011).