We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Near infrared-responsive quinacrine–gold hybrid nanoparticles deregulate HSP-70/P300-mediated H3K14 acetylation in ER/PR+ breast cancer stem cells

    Somya Ranjan Dash

    Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India

    ,
    Chinmay Das

    Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India

    ,
    Biswajit Das

    Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India

    ,
    Atala Bihari Jena

    National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India

    ,
    Subarno Paul

    Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India

    ,
    Saptarshi Sinha

    Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India

    ,
    Jasaswini Tripathy

    School of Applied Sciences (Chemistry), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India

    &
    Chanakya Nath Kundu

    *Author for correspondence: Tel.: +91 0674 272 5466;

    E-mail Address: cnkundu@kiitbiotech.ac.in

    Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India

    Published Online:https://doi.org/10.2217/nnm-2023-0269

    Aim: This study aimed to determine if quinacrine–gold hybrid nanoparticles (QAuNPs) + near-infrared (NIR) deregulate HSP-70/P300 complex-mediated H3K14 acetylation in estrogen receptor/progesterone receptor (ER/PR+) breast cancer stem cells (CSCs). Materials & methods: Various cells and mouse-based systems were used as models. Results: QAuNP + NIR treatment reduced the nuclear translocation of HSP-70, affected the histone acetyltransferase activity of P300 and specifically decreased H3K14 acetylation in ER/PR+ breast CSCs. Finally, HSP-70 knockdown showed a reduction in P300 histone acetyltransferase activity, decreased H3K14 acetylation and inhibited activation of the TGF-β gene. Conclusion: This study revealed that QAuNP + NIR irradiation inhibits oncogenic activation of the TGF-β gene by decreasing H3K14 acetylation mediated through the HSP-70/P300 nuclear complex in ER/PR+ breast CSCs.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Prud'Homme GJ. Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab. Invest. 87(11), 1077–1091 (2007).
    • 2. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-β – an excellent servant but a bad master. J. Transl. Med. 10, 183 (2012). • Highlights the role of TGF-β in cancer development and progression.
    • 3. Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb. Perspect. Biol. 9(12), a022277 (2017).
    • 4. Papageorgis P, Stylianopoulos T. Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review). Int. J. Oncol. 46(3), 933–943 (2015).
    • 5. Lu Y, Chan Y-T, Tan H-Y, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol. Cancer 19(1), 79 (2020). • Highlights how epigenetic modification regulates the activation of oncogenes.
    • 6. Bure IV, Nemtsova MV, Kuznetsova EB. Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis. Int. J. Mol. Sci. 23(10), 5801 (2022).
    • 7. Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules 10(3), 487 (2020).
    • 8. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 21(3), 381–395 (2011).
    • 9. Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J. Natl Cancer Center 2(4), 277–290 (2022).
    • 10. Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics 12(11), 4935–4948 (2022).
    • 11. Kimura H. Histone modifications for human epigenome analysis. J. Hum. Genet. 58(7), 439–445 (2013).
    • 12. Armenta-Castro E, Reyes-Vallejo T, Máximo-Sánchez D et al. Histone H3K9 and H3K14 acetylation at the promoter of the LGALS9 gene is associated with mRNA levels in cervical cancer cells. FEBS Open Bio. 10(11), 2305–2315 (2020).
    • 13. Toh TB, Lim JJ, Chow EK-H. Epigenetics in cancer stem cells. Mol. Cancer 16(1), 29 (2017).
    • 14. Paul S, Sinha S, Kundu CN. Targeting cancer stem cells in the tumor microenvironment: an emerging role of PARP inhibitors. Pharmacol. Res. 184, 106425 (2022).
    • 15. Sinha S, Molla S, Kundu CN. PARP1-modulated chromatin remodeling is a new target for cancer treatment. Med. Oncol. 38(10), 118 (2021).
    • 16. Mayer MP, Bukau B. HSP70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62(6), 670–684 (2005).
    • 17. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 multi-functionality in cancer. Cells 9(3), 587 (2020). • First to show that deregulating the HSP-70/TGF-β axis with quinacrine-gold hybrid nanoparticle and near-infrared irradiation suppresses angiogenesis in breast cancer.
    • 18. Dash SR, Das B, Das C et al. Near-infrared enhances antiangiogenic potentiality of quinacrine-gold hybrid nanoparticles in breast cancer stem cells via deregulation of HSP-70/TGF-β. Nanomedicine (Lond.) 18(1), 19–33 (2023). • First to demonstrate that the combination of quinacrine-gold hybrid nanoparticle and near-infrared can reduce the ability of oral cancer stem cells to metastasize.
    • 19. Dash SR, Chatterjee S, Sinha S et al. NIR irradiation enhances the apoptotic potentiality of quinacrine-gold hybrid nanoparticles by modulation of HSP-70 in oral cancer stem cells. Nanomedicine 40, 102502 (2022).
    • 20. Satapathy SR, Nayak A, Siddharth S, Das S, Nayak D, Kundu CN. Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. Nanomedicine 14(3), 883–896 (2018).
    • 21. Kamal KM, Narayan R, Chandran N et al. Synergistic enhancement of photocatalytic CO2 reduction by plasmonic Au nanoparticles on TiO2 decorated N-graphene heterostructure catalyst for high selectivity methane production. Appl. Catalysis B. Environ. 307, 121181 (2022).
    • 22. Ambrožič B, Prašnikar A, Hodnik N et al. Controlling the radical-induced redox chemistry inside a liquid-cell TEM. Chem. Sci. 10(38), 8735–8743 (2019).
    • 23. Das B, Sethy C, Chatterjee S et al. Quinacrine inhibits cMET-mediated metastasis and angiogenesis in breast cancer stem cells. J. Cell Commun. Signal. 17, 1371–1388 (2023).
    • 24. Hembram KC, Dash SR, Das B et al. Quinacrine based gold hybrid nanoparticles caused apoptosis through modulating replication fork in oral cancer stem cells. Mol. Pharm. 17(7), 2463–2472 (2020).
    • 25. Sinha S, Chatterjee S, Paul S et al. Olaparib enhances the resveratrol-mediated apoptosis in breast cancer cells by inhibiting the homologous recombination repair pathway. Exp. Cell Res. 420(1), 113338 (2022).
    • 26. Paul S, Chatterjee S, Sinha S et al. Veliparib (ABT-888), a PARP inhibitor potentiates the cytotoxic activity of 5-fluorouracil by inhibiting MMR pathway through deregulation of MSH6 in colorectal cancer stem cells. Expert Opin. Ther. Targets 27(10), 999–1015 (2023).
    • 27. Molla S, Chatterjee S, Sethy C, Sinha S, Kundu CN. Olaparib enhances curcumin-mediated apoptosis in oral cancer cells by inducing PARP trapping through modulation of BER and chromatin assembly. DNA Repair (Amst.) 105, 103157 (2021).
    • 28. Chatterjee S, Dhal AK, Paul S et al. Combination of talazoparib and olaparib enhanced the curcumin-mediated apoptosis in oral cancer cells by PARP-1 trapping. J. Cancer Res. Clin. Oncol. 148(12), 3521–3535 (2022).
    • 29. Das C, Dash SR, Sinha S et al. Talazoparib enhances the quinacrine-mediated apoptosis in patient-derived oral mucosa CSCs by inhibiting BER pathway through the modulation of GCN5 and P300. Med. Oncol. 40(12), 351 (2023).
    • 30. Kozakov D, Hall DR, Xia B et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12(2), 255–278 (2017).
    • 31. Jena AB, Kanungo N, Nayak V, Chainy GBN, Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Sci. Rep. 11(1), 2043 (2021).
    • 32. Pradhan R, Paul S, Das B et al. Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway. J. Nutr. Biochem. 113, 109257 (2023).
    • 33. Sethy C, Goutam K, Das B, Dash SR, Kundu CN. Nectin-4 promotes lymphangiogenesis and lymphatic metastasis in breast cancer by regulating CXCR4-LYVE-1 axis. Vascul. Pharmacol. 140, 106865 (2021).
    • 34. Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell. Mol. Life Sci. 70(21), 3989–4008 (2013).
    • 35. Jena AB, Duttaroy AK. A computational approach for molecular characterization of covaxin (BBV152) and its ingredients for assessing its efficacy against COVID-19. Future Pharmacol. 2(3), 306–319 (2022).
    • 36. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 4, 51 (2011).
    • 37. Verdone L, Agricola E, Caserta M, Di Mauro E. Histone acetylation in gene regulation. Brief. Funct. Genom. 5(3), 209–221 (2006).
    • 38. Wapenaar H, Dekker FJ. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin. Epigenet. 8(1), 59 (2016).