We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The relationship between hyperhomocysteinemia and neurodegeneration

    Francesco Bonetti

    *Author for correspondence:

    E-mail Address: francesco_bonetti1@virgilio.it

    Department of Medical Sciences, University of Ferrara, Italy, Via Aldo Moro 8, I-44124, Ferrara, Italy

    ,
    Gloria Brombo

    Department of Medical Sciences, University of Ferrara, Italy, Via Aldo Moro 8, I-44124, Ferrara, Italy

    &
    Giovanni Zuliani

    Department of Medical Sciences, University of Ferrara, Italy, Via Aldo Moro 8, I-44124, Ferrara, Italy

    Published Online:https://doi.org/10.2217/nmt-2015-0008

    Homocysteine (Hcy) is a key junction in methionine metabolism. In inherited forms of hyperhomocysteinemia patients develop early vascular damage and cognitive decline. Hyperhomocysteinemia is a common consequence of dietary, behavioral and pathological conditions and is epidemiologically related to different diseases, among them neurodegenerative ones are receiving progressively more attention in the last years. Several detrimental mechanisms that see in Hcy a possible promoter seem to be implicated in neurodegeneration (protein structural and functional modifications, oxidative stress, cellular metabolic derangements, epigenetic modifications, pathological aggregates deposition, endothelial damage and atherothrombosis). Interventional studies exploring B group vitamins administration in terms of prevention of Hcy-related cognitive decline and cerebrovascular involvement have shown scant results. In this review, current and possible alternative/complementary approaches are discussed.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: a review of animal and human literature. Mol. Genet. Metab. 113(4), 243–252 (2014).
    • 2 Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N. The role of homocysteine in bone remodeling. Clin. Chem. Lab. Med. 51(3), 579–590 (2013).
    • 3 Petramala L, Acca M, Francucci CM, D'Erasmo E. Hyperhomocysteinemia: a biochemical link between bone and cardiovascular system diseases? J. Endocrinol. Invest. 32(Suppl. 4), 10–14 (2009).
    • 4 Ansari R, Mahta A, Mallack E, Luo JJ. Hyperhomocysteinemia and neurologic disorders: a review. J. Clin. Neurol. 10(4), 281–288 (2014).
    • 5 Zhuo JM, Wang H, Praticò D. Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol. Sci. 32(9), 562–571 (2011).
    • 6 Nachum-Biala Y, Troen AM. B-vitamins for neuroprotection: narrowing the evidence gap. Biofactors 38(2), 145–150 (2012).
    • 7 Malouf M, Grimley EJ, Areosa SA. Folic acid with or without vitamin B12 for cognition and dementia. Cochrane Database Syst. Rev. (4), CD004514 (2003).
    • 8 Malouf R, Grimley Evans J. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst. Rev. (4), CD004514 (2008).
    • 9 Malouf R, Grimley Evans J. The effect of vitamin B6 on cognition. Cochrane Database Syst. Rev. (4), CD004393 (2003).
    • 10 Malouf R, Areosa Sastre A. Vitamin B12 for cognition. Cochrane Database Syst Rev. (3), CD004326 (2003).
    • 11 Ford AH, Almeida OP. Effect of homocysteine lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. J. Alzheimers Dis. 29(1), 133–149 (2012).
    • 12 Clarke R, Bennett D, Parish S et al. B-Vitamin Treatment Trialists’ Collaboration. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am. J. Clin. Nutr. 100(2), 657–666 (2014).
    • 13 Douaud G, Refsum H, de Jager CA et al. Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl Acad. Sci. USA 110, 9523–9528 (2013).
    • 14 Smith AD, Smith SM, de Jager CA et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS ONE 5(9), e12244 (2010).
    • 15 de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int. J. Geriatr. Psychiatry 27(6), 592–600 (2012).
    • 16 Scalabrino G. The multi-faceted basis of vitamin B12 (cobalamin) neurotrophism in adult central nervous system: lessons learned from its deficiency. Prog. Neurobiol. 88(3), 203–220 (2009).
    • 17 Fuso A. The ‘golden age’ of DNA methylation in neurodegenerative diseases. Clin. Chem. Lab. Med. 51(3), 523–534 (2013). • This paper is a synthetic but exhaustive summary of the possible link among homocysteine, epigenetics and neurodegeneration.
    • 18 Seifter JL, Samuels MA. Uremic encephalopathy and other brain disorders associated with renal failure. Semin. Neurol. 31(2), 139–143 (2011).
    • 19 Haroon NN, Austin PC, Shah BR, Wu J, Gill SS, Booth GL. Risk of dementia in seniors with newly diagnosed diabetes: a population-based study. Diabetes Care 38(10), 1868–1875 (2015).
    • 20 de Jager J, Kooy A, Lehert P et al. Long term treatment with metformin in patients with Type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ 20(340), c2181 (2010).
    • 21 Kruman II, Henderson GI, Bergeson SE. DNA damage and neurotoxicity of chronic alcohol abuse. Exp. Biol. Med. (Maywood) 237(7), 740–747 (2012).
    • 22 O'Callaghan P, Meleady R, Fitzgerald T, Graham I, European COMAC group. Smoking and plasma homocysteine. Eur. Heart. J. 23(20), 1580–1586 (2002).
    • 23 Mayo JN, Chen CH, Liao FF, Bearden SE. Homocysteine disrupts outgrowth of microvascular endothelium by an iNOS-dependent mechanism. Microcirculation 21(6), 541–550 (2014).
    • 24 Lee JT, Peng GS, Chen SY et al. Homocysteine induces cerebral endothelial cell death by activating the acid sphingomyelinase ceramide pathway. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 21–27 (2013).
    • 25 Zhang D, Sun X, Liu J, Xie X, Cui W, Zhu Y. Homocysteine accelerates senescence of endothelial cells via DNA hypomethylation of human telomerase reverse transcriptase. Arterioscler. Thromb. Vasc. Biol. 35(1), 71–78 (2015).
    • 26 Lin N, Qin S, Luo S, Cui S, Huang G, Zhang X. Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro. FEBS J. 281(8), 2088–2096 (2014).
    • 27 Yeganeh F, Nikbakht F, Bahmanpour S, Rastegar K, Namavar R. Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: in vivo study. J. Mol. Neurosci. 50(3), 551–557 (2013).
    • 28 Sudduth TL, Powell DK, Smith CD, Greenstein A, Wilcock DM. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J. Cereb. Blood Flow Metab. 33(5), 708–715 (2013). • A good example of hyperhomocysteinemic animal model, of particular interest the completeness of the study design and the adoption of an exposure to moderate hyperhomocysteinemia, more relevant for interpreting human clinical outcomes (with the obvious limits of transposing laboratory animal models observation into real-life human disease).
    • 29 Li JG, Chu J, Barrero C, Merali S, Praticò D. Homocysteine exacerbates β-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann. Neurol. 75(6), 851–863 (2014).
    • 30 Zou CG, Zhao YS, Gao SY et al. Homocysteine promotes proliferation and activation of microglia. Neurobiol. Aging 31(12), 2069–2079 (2010).
    • 31 Ford AH, Flicker L, Alfonso H et al. Plasma homocysteine and MTHFRC677T polymorphism as risk factors for incident dementia. J. Neurol. Neurosurg. Psychiatry 83(1), 70–75 (2012).
    • 32 Zylberstein DE, Lissner L, Bjorkelund C et al. Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiol. Aging 32(3), 380–386 (2011).
    • 33 Hooshmand B, Solomon A, Kareholt I et al. Homocysteine and holotranscobalamin and the risk of Alzheimer disease: a longitudinal study. Neurology 75(16), 1408–1414 (2010).
    • 34 Seshadri S, Wolf PA, Beiser AS et al. Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch. Neurol. 65(5), 642–649 (2008).
    • 35 Bonetti F, Brombo G, Magon S, Zuliani G. Cognitive status according to homocysteine and B-group vitamins in elderly adults. J. Am. Geriatr. Soc. 63(6), 1158–1163 (2015).
    • 36 van den Kommer TN, Dik MG, Comijs HC, Jonker C, Deeg DJ. Homocysteine and inflammation: predictors of cognitive decline in older persons? Neurobiol. Aging 31(10), 1700–1709 (2010).
    • 37 Ravaglia G, Forti P, Maioli F et al. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am. J. Clin. Nutr. 82(3), 636–643 (2005).
    • 38 Schafer JH, Glass TA, Bolla KI, Mintz M, Jedlicka AE, Schwartz BS. Homocysteine and cognitive function in a population-based study of older adults. J. Am. Geriatr. Soc. 53(3), 381–388 (2005).
    • 39 Yang B, Fan S, Zhi X et al. Prevalence of hyperhomocysteinemia in China: a systematic review and meta-analysis. Nutrients 7(1), 74–90 (2014).
    • 40 Ostrakhovitch EA, Tabibzadeh S. Homocysteine in chronic kidney disease. Adv. Clin. Chem. 72, 77–106 (2015).
    • 41 Lakryc EM, Machado RB, Soares JM Jr, Fernandes CE, Baracat EC. What is the influence of hormone therapy on homocysteine and crp levels in postmenopausal women? Clinics (Sao Paulo) 70(2), 107–113 (2015).
    • 42 Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch. Neurol. 67(2), 148–153 (2010).
    • 43 Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 34(1), 75–81 (2011).
    • 44 Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 58(1), 1–10 (2015).
    • 45 Liu H, Yang M, Li GM et al. The MTHFR C677T polymorphism contributes to an increased risk for vascular dementia: a meta-analysis. J. Neurol. Sci. 294(1), 74–80 (2010).
    • 46 Hua Y, Zhao H, Kong Y, Ye M. Association between the MTHFR gene and Alzheimer's disease: a meta-analysis. Int. J. Neurosci. 121(8), 462–471 (2011).
    • 47 Wu YL, Ding XX, Sun YH, Yang HY, Sun L. Methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and susceptibility to Parkinson's disease: a meta-analysis. J. Neurol. Sci. 335(1), 14–21 (2013).
    • 48 Weisberg IS, Jacques PF, Selhub J et al. The 1298A–>C polymorphism in methylenetetrahydrofolate reductase (MTHFR), in vitro expression and association with homocysteine. Atherosclerosis 156(2), 409–415 (2001).
    • 49 Leclerc D, Sibani S, Rozen R. Molecular biology of methylenetetrahydrofolate reductase (MTHFR) and overview of mutations/polymorphisms. In: Madame Curie Bioscience Database. Landes Bioscience (Ed.). Austin, TX, USA (2000). www.ncbi.nlm.nih.gov/books/NBK6561/.
    • 50 Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 64(3), 169–172 (1998).
    • 51 Hickey SE, Curry CJ, Toriello HV. ACMG practice guideline: lack of evidence for MTHFR polymorphism testing. Genet. Med. 15(2), 153–156 (2013).
    • 52 Huang T, Tucker KL, Lee YC et al. Methylenetetrahydrofolate reductase variants associated with hypertension and cardiovascular disease interact with dietary polyunsaturated fatty acids to modulate plasma homocysteine in puerto rican adults. J. Nutr. 141(4), 654–659 (2011).
    • 53 Mansoori N, Tripathi M, Luthra K et al. MTHFR (677 and 1298) and IL-6-174 G/C genes in pathogenesis of Alzheimer's and vascular dementia and their epistatic interaction. Neurobiol. Aging 33(5), 1003.e1–1003.e8 (2012).
    • 54 Anello G, Guéant-Rodríguez RM, Bosco P et al. Homocysteine and methylenetetrahydrofolate reductase polymorphism in Alzheimer's disease. Neuroreport 15(5), 859–861 (2004).
    • 55 Ueland PM. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 34(1), 3–15 (2011).
    • 56 Gunduz M, Gunduz E, Kircelli F, Okur N, Ozkaya M. Role of surrogate markers of atherosclerosis in clinical and subclinical thyroidism. Int. J. Endocrinol. 2012, 109797 (2012).
    • 57 van Guldener C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol. Dial. Transplant. 21(5), 1161–1166 (2006).
    • 58 Kang A, Nigwekar SU, Perkovic V et al. Interventions for lowering plasma homocysteine levels in kidney transplant recipients. Cochrane Database Syst. Rev. 5, CD007910 (2015).
    • 59 Huang T, Ren J, Huang J, Li D. Association of homocysteine with Type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics 14, 867 (2013).
    • 60 Wijekoon EP, Brosnan ME, Brosnan JT. Homocysteine metabolism in diabetes. Biochem. Soc. Trans. 35(Pt 5), 1175–1179 (2007).
    • 61 Kwak HC, Kim YM, Oh SJ, Kim SK. Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem. Pharmacol. 96(3), 256–266 (2015).
    • 62 Das M, Ghose M, Borah NC, Choudhury N. A community based study of the relationship between homocysteine and some of the life style factors. Indian J. Clin. Biochem. 25(3), 295–301 (2010).
    • 63 Chrysohoou C, Panagiotakos DB, Pitsavos C et al. The associations between smoking, physical activity, dietary habits and plasma homocysteine levels in cardiovascular disease-free people: the ‘ATTICA’ study. Vasc. Med. 9(2), 117–123 (2004).
    • 64 Desouza C, Keebler M, McNamara DB, Fonseca V. Drugs affecting homocysteine metabolism: impact on cardiovascular risk. Drugs 62(4), 605–616 (2002).
    • 65 Zoccolella S, Martino D, Defazio G, Lamberti P, Livrea P. Hyperhomocysteinemia in movement disorders: current evidence and hypotheses. Curr. Vasc. Pharmacol. 4(3), 237–243 (2006).
    • 66 Zoccolella S, dell'Aquila C, Specchio LM, Logroscino G, Lamberti P. Elevated homocysteine levels in Parkinson's disease: is there anything besides L-dopa treatment? Curr. Med. Chem. 17(3), 213–221 (2010).
    • 67 Miller JW. Homocysteine, folate deficiency, and Parkinson's disease. Nutr. Rev. 60(12), 410–413 (2002).
    • 68 Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. J. Neurochem. 80(1), 101–110 (2002).
    • 69 Zoccolella S, Lamberti SV, Iliceto G, Santamato A, Lamberti P, Logroscino G. Hyperhomocysteinemia in L-dopa treated patients with Parkinson's disease: potential implications in cognitive dysfunction and dementia? Curr. Med. Chem. 17(28), 3253–3261 (2010).
    • 70 Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: impact on neurodegenerative diseases. Basic Clin. Pharmacol. Toxicol. 117(5), 287–296 (2015).
    • 71 Ientile R, Curro’ M, Ferlazzo N, Condello S, Caccamo D, Pisani F. Homocysteine, vitamin determinants and neurological diseases. Front. Biosci. (Schol. Ed.) 2, 359–372 (2010).
    • 72 Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69(24), 2197–2204 (2007). • Describes a fact of paramount importance in discussing about neurodegeneration, basic for clinical transposition of single-etiology mechanisms: in most cases cognitive impairment and dementia are a phenotypic manifestation of multiple causes, especially in later life. It is essential to contextualize the effect of a neurotoxic/neurodegenerative process in the global pathological burden of the patient.
    • 73 Genoud V, Lauricella AM, Kordich LC, Quintana I. Impact of homocysteine-thiolactone on plasma fibrin networks. J. Thromb. Thrombolysis 38(4), 540–545 (2014).
    • 74 Jakubowski H. The role of paraoxonase 1 in the detoxification of homocysteine thiolactone. Adv. Exp. Med. Biol. 660, 113–127 (2010).
    • 75 Sharma GS, Kumar T, Dar TA, Singh LR. Protein N-homocysteinylation: from cellular toxicity to neurodegeneration. Biochim. Biophys. Acta 1850(11), 2239–2245 (2015).
    • 76 McCully KS. Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann. Clin. Lab. Sci. 39(3), 219–232 (2009). • A complete review. It exposes relevant evidences, an original point of view and courageous hypothesis.
    • 77 McCully KS. Chemical pathology of homocysteine. V. Thioretinamide, thioretinaco, and cystathionine synthase function in degenerative diseases. Ann. Clin. Lab. Sci. 41(4), 301–314 (2011).
    • 78 Boldyrev A, Bryushkova E, Mashkina A, Vladychenskaya E. Why is homocysteine toxic for the nervous and immune systems? Curr. Aging Sci. 6(1), 29–36 (2013).
    • 79 Boldyrev AA. Molecular mechanisms of homocysteine toxicity. Biochemistry (Mosc) 74(6), 589–598 (2009).
    • 80 McCully KS. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia. Ann. Clin. Lab. Sci. 45(2), 222–225 (2015).
    • 81 Abushik PA, Niittykoski M, Giniatullina R et al. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J. Neurochem. 129(2), 264–274 (2014).
    • 82 McBean GJ. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids 42(1), 199–205 (2012).
    • 83 Chen NC, Yang F, Capecci LM et al. Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J. 24(8), 2804–2817 (2010).
    • 84 Stefaniak J, O'Brien J. Imaging of neuroinflammation in dementia: a review. J. Neurol. Neurosurg. Psychiatry 87(1), 21–28 (2016).
    • 85 Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Transl. Neurodegener. 12, 4–19 (2015).
    • 86 Surendranathan A, Rowe JB, O'Brien JT. Neuroinflammation in Lewy body dementia. Parkinsonism Relat. Disord. 21(12), 1398–1406 (2015).
    • 87 Azizi G, Mirshafiey A. The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis. Immunopharmacol. Immunotoxicol. 34(6), 881–895 (2012).
    • 88 Scherer EB, Loureiro SO, Vuaden FC et al. Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol. Neurobiol. 50(2), 589–596 (2014).
    • 89 da Cunha AA, Ferreira AG, Loureiro SO et al. Chronic hyperhomocysteinemia increases inflammatory markers in hippocampus and serum of rats. Neurochem. Res. 37(8), 1660–1669 (2012).
    • 90 McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev. Clin. Pharmacol. 8(2), 211–219 (2015).
    • 91 Scherer EB, Loureiro SO, Vuaden FC et al. Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol. Neurobiol. 50(2), 589–596 (2014).
    • 92 da Cunha AA, Ferreira AG, Loureiro SO et al. Chronic hyperhomocysteinemia increases inflammatory markers in hippocampus and serum of rats. Neurochem. Res. 37(8), 1660–1669 (2012).
    • 93 Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav. Immun. 19(6), 493–499 (2005).
    • 94 Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J. Intern. Med. 265(6), 663–679 (2009).
    • 95 Guest J, Bilgin A, Hokin B, Mori TA, Croft KD, Grant R. Novel relationships between B12, folate and markers of inflammation, oxidative stress and NAD(H) levels, systemically and in the CNS of a healthy human cohort. Nutr. Neurosci. (8), 355–364 (2015).
    • 96 Eren E, Ellidag HY, Aydin O, Yılmaz N. Homocysteine, paraoxonase-1 and vascular endothelial dysfunction: omnibus viis romam pervenitur. J. Clin. Diagn. Res. 8(9), CE01–CE04 (2014).
    • 97 Wang XC, Sun WT, Yu CM et al. ER stress mediates homocysteine-induced endothelial dysfunction: modulation of IKCa and SKCa channels. Atherosclerosis 242(1), 191–198 (2015).
    • 98 Ravnskov U, McCully KS. Review and hypothesis: vulnerable plaque formation from obstruction of Vasa vasorum by homocysteinylated and oxidized lipoprotein aggregates complexed with microbial remnants and LDL autoantibodies. Ann. Clin. Lab. Sci. 39(1), 3–16 (2009).
    • 99 Vermeer SE, van Dijk EJ, Koudstaal PJ et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam scan study. Ann. Neurol. 51(3), 285–289 (2002).
    • 100 Tangney CC, Aggarwal NT, Li H et al. Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination. Neurology 77(13), 1276–1282 (2011).
    • 101 Kamat PK, Vacek JC, Kalani A, Tyagi N. Homocysteine induced cerebrovascular dysfunction: a link to Alzheimer's disease etiology. Open. Neurol. J. 9, 9–14 (2015).
    • 102 Fuso A, Nicolia V, Cavallaro RA, Scarpa S. DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer's disease models. J. Nutr. Biochem. 22(3), 242–251 (2011). • Pioneering article on a possible concrete link between hyperhomocysteinemia and Alzheimer's disease.
    • 103 Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J. Gastroenterol. 10(12), 1699–1708 (2004).
    • 104 Althausen S, Paschen W. Homocysteine-induced changes in mRNA levels of genes coding for cytoplasmic- and endoplasmic reticulum-resident stress proteins in neuronal cell cultures. Brain Res. Mol. Brain Res. 84(1), 32–40 (2000).
    • 105 Kim HJ, Cho HK, Kwon YH. Synergistic induction of ER stress by homocysteine and beta-amyloid in SH-SY5Y cells. J. Nutr. Biochem. 19(11), 754–761 (2008).
    • 106 Slodzinski H, Moran LB, Michael GJ et al. Homocysteine-induced endoplasmic reticulum protein (herp) is up-regulated in parkinsonian substantia nigra and present in the core of Lewy bodies. Clin. Neuropathol. 28(5), 333–343 (2009).
    • 107 Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 15(10), 2025–2039 (2011).
    • 108 Nurk E, Tell GS, Vollset SE et al. Changes in lifestyle and plasma total homocysteine: the Hordaland Homocysteine Study. Am. J. Clin. Nutr. 79(5), 812–819 (2004).
    • 109 Stabler SP. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med. 368(2), 149–160 (2013).
    • 110 Zeman M, Zák A, Vecka M, Tvrzická E, Písaríková A, Stanková B. N-3 fatty acid supplementation decreases plasma homocysteine in diabetic dyslipidemia treated with statin-fibrate combination. J. Nutr. Biochem. 17(6), 379–384 (2006).
    • 111 Zinellu A, Sotgia S, Pisanu E et al. LDL S-homocysteinylation decrease in chronic kidney disease patients undergone lipid lowering therapy. Eur. J. Pharm. Sci. 47(1), 117–123 (2012).
    • 112 Drewes YM, Poortvliet RK, Blom JW et al. Homocysteine levels and treatment effect in the PROspective study of pravastatin in the elderly at Risk. J. Am. Geriatr. Soc. 62(2), 213–221 (2014).
    • 113 Santilli F, Davì G, Patrono C. Homocysteine, methylenetetrahydrofolate reductase, folate status and atherothrombosis: a mechanistic and clinical perspective. Vascul. Pharmacol. 78, 1–9 (2015).
    • 114 Veeranna V, Zalawadiya SK, Niraj A et al. Homocysteine and reclassification of cardiovascular disease risk. J. Am. Coll. Cardiol. 58(10), 1025–1033 (2011).
    • 115 Hankey GJ, Eikelboom JW, Yi Q et al. VITATOPS trial study group. Antiplatelet therapy and the effects of B vitamins in patients with previous stroke or transient ischaemic attack: a post-hoc subanalysis of VITATOPS, a randomised, placebo-controlled trial. Lancet Neurol. 11(6), 512–520 (2012).
    • 116 Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog. Lipid. Res. 60, 50–73 (2015).
    • 117 Borowczyk K, Shih DM, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J. Alzheimers Dis. 30(2), 225–231 (2012).
    • 118 Perla-Kaján J, Jakubowski H. Paraoxonase 1 protects against protein N-homocysteinylation in humans. FASEB J. 24(3), 931–936 (2010).
    • 119 Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B. Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol. Biochem. Behav. 96(4), 378–385 (2010).
    • 120 Machado FR, Ferreira AG, da Cunha AA et al. Homocysteine alters glutamate uptake and Na+, K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab. Brain Dis. 26(1), 61–67 (2011).
    • 121 Hildebrandt W, Sauer R, Bonaterra G, Dugi KA, Edler L, Kinscherf R. Oral N-acetylcysteine reduces plasma homocysteine concentrations regardless of lipid or smoking status. Am. J. Clin. Nutr. 102(5), 1014–1024 (2015).
    • 122 Kamat PK, Kalani A, Tyagi SC, Tyagi N. Hydrogen sulfide epigenetically attenuates homocysteine-induced mitochondrial toxicity mediated through NMDA receptor in mouse brain endothelial (bEnd3) cells. J. Cell. Physiol. 230(2), 378–394 (2015).
    • 123 Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience 252, 302–319 (2013).
    • 124 Fuso A, Nicolia V, Ricceri L et al. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol. Aging 33(7), 1482.e1–1482.e16 (2012).
    • 125 Halliday M, Mallucci GR. Targeting the unfolded protein response in neurodegeneration: a new approach to therapy. Neuropharmacology 76(Pt A), 169–174 (2014).