We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Immunotherapy of viral infections

    Nagendra R Hegde

    † Author for correspondence

    Bharat Biotech Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, India.

    ,
    Pavuluri Panduranga Rao

    Bharat Biotech Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, India.

    ,
    Jagadeesh Bayry

    Institut National de la Santé et de la Recherche Médicale, France

    Universite Pierre et Marie Curie, France

    Université Paris Descartes, France

    &
    Srinivas V Kaveri

    Institut National de la Santé et de la Recherche Médicale, France

    Universite Pierre et Marie Curie, France

    Université Paris Descartes, France

    Published Online:https://doi.org/10.2217/imt.09.26

    Among the microorganisms that cause diseases of medical or veterinary importance, the only group that is entirely dependent on the host, and hence not easily amenable to therapy via pharmaceuticals, is the viruses. Since viruses are obligate intracellular pathogens, and therefore depend a great deal on cellular processes, direct therapy of viral infections is difficult. Thus, modifying or targeting nonspecific or specific immune responses is an important aspect of intervention of ongoing viral infections. However, as a result of the unavailability of effective vaccines and the extended duration of manifestation, chronic viral infections are the most suitable for immunotherapies. We present an overview of various immunological strategies that have been applied for treating viral infections after exposure to the infectious agent.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Sawyer LA: Antibodies for the prevention and treatment of viral diseases. Antiviral Res.47(2),57–77 (2000).
    • Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV: Intravenous immunoglobulin for infectious diseases: back to the pre-antibiotic and passive prophylaxis era? Trends Pharmacol. Sci.25(6),306–310 (2004).
    • Negi VS, Elluru S, Siberil S et al.: Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J. Clin. Immunol.27(3),233–245 (2007).
    • Kazatchkine MD, Kaveri SV: Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J. Med.345(10),747–755 (2001).
    • Wu H, Pfarr DS, Losonsky GA, Kiener PA: Immunoprophylaxis of RSV infection, advancing from RSV-IGIV to palivizumab and motavizumab. Curr. Top. Microbiol. Immunol.317,103–123 (2008).
    • Green M, Reyes J, Webber S, Rowe D: The role of antiviral and immunoglobulin therapy in the prevention of Epstein–Barr virus infection and post-transplant lymphoproliferative disease following solid organ transplantation. Transpl. Infect. Dis.3(2),97–103 (2001).
    • Haley M, Retter AS, Fowler D, Gea-Banacloche J, O’Grady NP: The role for intravenous immunoglobulin in the treatment of West Nile virus encephalitis. Clin. Infect. Dis.37(6),E88–E90 (2003).
    • McGhee SA, Kaska B, Liebhaber M, Stiehm ER: Persistent parvovirus-associated chronic fatigue treated with high dose intravenous immunoglobulin. Pediatr. Infect. Dis. J.24(3),272–274 (2005).
    • Sharma AP, Moussa M, CAsier S et al.: Intravenous immunoglobulin as rescue therapy for BK virus nephropathy. Pediatr. Transplant.13(1),123–129 (2009).
    • 10  Mortimer P: Reprinted from JAMA 12 April, 1926; 1180–1187. Convelescent whole blood, plasma and serum in prophylaxis of measles, by Abraham Zingher. Rev. Med. Virol.15,407–421 (2005).
    • 11  Zhou B, Zhong N, Guan Y: Treatment with convalescent plasma for influenza A (H5N1) infection. N. Engl. J. Med.357(14),1450–1451 (2007).
    • 12  Walter EB, Hornick RB, Poland GA et al.: Concurrent administration of inactivated hepatitis A vaccine with immune globulin in healthy adults. Vaccine17(11–12),1450–1451 (1999).
    • 13  Chachu KA, Strong DW, LoBue AD et al.: Antibody is critical for the clearance of murine norovirus infection. J. Virol.82(13),6610–6617 (2008).
    • 14  Vanwolleghem T, Bukh J, Meuleman P et al.: Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with homologous hepatitis C virus strain. Hepatology47(6),1846–1855 (2008).
    • 15  García-Gallo CL, Gil PU, Laporta R et al.: Is γ-globulin anti-CMV warranted in lung transplantation? Transplant. Proc.37(9),4043–4045 (2005).
    • 16  Nigro G, Adler SP, La Torre R, Best AM: Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med.353,1350–1362 (2005).
    • 17  Jonjic S, Pavic I, Polic B et al.: Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J. Exp. Med.179,1713–1717 (1994).
    • 18  Klenovsek K, Weisel F, Schneider A et al.: Protection from CMV infection in immunodeficient hosts by adoptive transfer of memory B cells. Blood110,3472–3479 (2007).
    • 19  Wirtz N, Schader SI, Holtappels R et al.: Polyclonal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Med. Microbiol. Immunol.197(2),151–158 (2008).
    • 20  Fu CY, Huang H, Wang XM et al.: Preparation and evaluation of anti-SARS coronavirus IgY from yolks of immunized SPF chickens. J. Virol. Methods133(1),112–115 (2006).
    • 21  Kovacs-Nolan J, Mine Y: Microencapsulation for the gastric passage and controlled intestinal release of immunoglobulin Y. J. Immunol. Methods296(1–2),199–209 (2005).
    • 22  Yousif AA, Mohammad WA, Khodeir MH et al.: Oral administration of hyperimmune IgY, an immunoecological approach to curbing acute infectious bursal disease virus infection. Egypt. J. Immunol.13(2),85–94 (2006).
    • 23  Fenner M, Siegmann K, Binz H: Monoclonal antibodies specific for Sendai virus. II. Production of monoclonal anti-idiotypic antibodies. Scand. J. Immunol.24(3),341–349 (1986).
    • 24  Gaulton GN, Sharpe AH, Chang DW, Fields BN, Greene MI: Syngeneic monoclonal inernal image anti-idiotopes as prophylactic vaccines. J. Immunol.137(9),2930–2936 (1986).
    • 25  Kennedy RC, Eichberg JW, Lanford RE, Dreesman GR: Anti-idiotypic antibody vaccine for type B viral hepatitis in chimpanzees. Science232(4747),220–223 (1986).
    • 26  Tanaka M, Sasaki N, Seto A: Induction of antibodies against Newcastle disease virus with syngeneic anti-idiotype antibodies in mice. Microbiol. Immunol.30(4),323–331 (1986).
    • 27  Oosterlaken TA, Harmsen M, Jhagjhoor-Singh SS et al.: A protective monoclonal anti-idiotypic vaccine to lethal Semliki Forest virus infection in BALB/c mice. J. Virol.65(1),98–102 (1991).
    • 28  Tavares L, Roneker C, Postie L, Fevereiro M, de Noronha F: Anti-idiotypic antibodies to feline leukemia virus: an approach for retroviral immunization strategies. Viral Immunol.4(1),5–16 (1991).
    • 29  Yu MW, Lemieux S, Talbot PJ: Genetic control of anti-idiotypic vaccination against coronavirus infection. Eur. J. Immunol.26(12),3230–3233 (1996).
    • 30  Gach JS, Quendler H, Weik R, Katinger H, Kunert R: Partial humanization and characterization of an anti-idiotypic antibody against monoclonal antibody 2F5, a potential HIV vaccine? AIDS Res. Hum. Retroviruses23(11),1405–1415 (2007).
    • 31  Gurish MF, Ben-Porat T, Nisonoff A: Induction of antibodies to pseudorabies virus by immunization with antiidiotypic antibodies. Ann. Inst. Pasteur Immunol.139(6),677–687 (1988).
    • 32  Baxt B, Garmendia AE, Morgan DO: Characterization of anti-idiotypic antibodies generated against foot-and-mouth disease virus neutralizing monoclonal antibodies. Viral Immunol.2(2),103–113 (1989).
    • 33  Sharpe AH, Gaulton GN, McDade KK, Fields BN, Greene MI: Syngeneic monoclonal anti-idiotype can induce cellular immunity to reovirus. J. Exp. Med.160(4),1195–1205 (1984).
    • 34  UytdeHaag F, Claassen I, Bunschoten H et al.: Human anti-idiotypic T lymphocyte clones are activated by autologous anti-rabies virus antibodies presented in association with HLA-DQ molecules. J. Mol. Cell. Immunol.3(3),145–155 (1987).
    • 35  Lal G, Shaila MS, Nayak R: Booster immunization of antigen primed mice with anti-idiotypic T cells generates antigen-specific memory T cell response. Vaccine24(8),1149–1158 (2006).
    • 36  Gangadhar V, Jeyakani JJ, Shaila MS, Nayak R, Chandra N: Perpetuation of immunological memory through common MHC-I binding modes of peptide-mimic and antigenic peptides. Biochem. Biophys. Res. Commun.364(2),308–312 (2007).
    • 37  Vani J, Nayak R, Shaila MS: A CD8+ T cell clone specific for antigen also recognizes peptidomimics present in anti-idiotypic antibody: implications for T cell memory. Cell. Immunol.246(1),17–25 (2007).
    • 38  Karpas A, Dremucheva A, Czepulkowski BH: A human myeloma cell line suitable for the generaiton of human monoclonal antibodies. Proc. Natl Acad. Sci. USA98(4),1799–1804 (2001).
    • 39  Park SG, Jung YJ, Lee YY et al.: Improvement of neutralizing activity of human scFv antibodies against heparitis B virus binding using CDR3 mutant library. Viral Immunol.19(1),115–123 (2006).
    • 40  Cao J, Meng S, Li C et al.: Efficient neutralizing activity of cocktailed recombinant human antibodies against hepatitis A virus infection in vitro and in vivo. J. Med. Virol.80(7),1171–1180 (2008).
    • 41  Greenough TC, Babcock GJ, Roberts A et al.: Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J. Infect. Dis.191(4),507–514 (2005).
    • 42  Wang R, Song A, Levin J et al.: Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antiviral Res.80(2),168–177 (2008).
    • 43  Traggiai E, Becker S, Subbarao K et al.: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med.10(8),871–875 (2004).▪▪ Even though it was well-known that Epstein–Barr virus transforms B cells, this was a novel way of using that fact for generation of monoclonal B cells from humans.
    • 44  Eren R, Landstein D, Terkeiltaub D et al.: Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis C virus (HCV): a potential treatment to prevent HCV reinfection in liver transplant patients. J. Virol.80(6),2654–2664 (2006).
    • 45  Simmons CP, Bernasconi NL, Suguitan AL et al.: Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med.4(5),E178 (2007).
    • 46  Beerli RR, Bauer M, Buser RB et al.: Isolation of human monoclonal antibodies by mammalian cell display. Proc. Natl Acad. Sci. USA105(38),14336–14441 (2008).
    • 47  Wrammert J, Smith K, Miller et al.: Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature453,667–671 (2008).
    • 48  ter Meulen J, van den Brink EN, Poon LLM et al.: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med.3(7),E237 (2006).
    • 49  Roberts A, Thomas WD, Guarner J et al.: Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. J. Infect. Dis.193(5),685–692 (2006).
    • 50  Chen Z, Earl P, Americo J et al.: Chimpanzee mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc. Natl Acad. Sci. USA103(6),1882–1887 (2006).
    • 51  Hunt AR, Frederickson S, Hinkel C, Bowdish KS, Roehrig JT: A humanized murine monoclonal antibody protects mice either before or after challenge with virulent Venezuelan equine encephalitis virus. J. Gen. Virol.87(Pt 9),2467–2476 (2006).
    • 52  Lustig S, Fogg C, Whitbeck JC et al.: Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J. Virol.79(21),13454–13462 (2005).
    • 53  Oliphant T, Engle M, Nybakken GE et al.: Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med.11(5),522–530 (2005).
    • 54  Huisman W, Martina BE, Rimmelzwaan GF, Gruters RA, Osterhaus AD: Vaccine-induced enhancement of viral infections. Vaccine27(4),505–512 (2008).
    • 55  Lobato MN, Rabbitts TH: Intracellular antibodies as specific reagents for functional ablation: future therapeutic molecules. Curr. Mol. Med.4(5),519–528 (2004).
    • 56  Muller BH, Lafay F, Demangel C et al.: Phage-displayed and soluble mouse scFv fragments neutralize rabies virus. J. Virol. Methods67(2),221–223 (1997).
    • 57  Marin M, Pelegrin-Zurilla M, Bachrach E et al.: Antiviral activity of an intracellularly expressed single-chain antibody fragment directed against the murine leukemia virus capsid protein. Hum. Gene Ther.11(3),389–401 (2000).
    • 58  Steinberger P, Andris-Widhopf J, Bühler B, Torbett BE, Barbas CF 3rd: Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc. Natl Acad. Sci. USA97(2),805–810 (2000).
    • 59  Corte-Real S, Collins C, Aires da Silva F et al.: Intrabodies targeting the Kaposi sarcoma-associated herpesvirus latency antigen inhibit viral persistence in lymphoma cells. Blood106(12),3797–3802 (2005).
    • 60  Griffin H, Elston R, Jackson D et al.: Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J. Mol. Biol.355(3),360–378 (2005).
    • 61  Mukhtar MM, Li S, Li W et al.: Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. Int. J. Biochem. Cell Biol.41(3),554–560 (2008).
    • 62  Gould LH, Sui J, Foellmer H et al.: Protective and therapeutic capacity of human single-chain Fv–Fc fusion proteins against West Nile virus. J. Virol.79(23),14606–14613 (2005).
    • 63  Levin R, Mhashilkar AM, Dorfman T et al.: Inhibition of early and late events of the HIV-1 replication cycle by cytoplasmic Fab intrabodies against the matrix protein, p17. Mol. Med.3(2),96–110 (1997).
    • 64  Mhashilkar AM, LaVecchio J, Eberhardt B et al.: Inhibition of human immunodeficiency virus type 1 replication in vitro in acutely and persistently infected human CD4+ mononuclear cells expressing murine and humanized anti-human immunodeficiency virus type 1 Tat single-chain variable fragment intrabodies. Hum. Gene Ther.10(9),1453–1467 (1999).
    • 65  Lamarre A, Yu MW, Chagnon F, Talbot PJ: A recombinant single chain antibody neutralizes coronavirus infectivity but only slightly delays lethal infection of mice. Eur. J. Immunol.27(12),3447–3455 (1997).
    • 66  Bregenholt S, Jensen A, Lantto J, Hyldig S, Haurum JS: Recombinant human polyclonal antibodies: a new class of therapeutic antibodies against viral infections. Curr. Pharm. Des.12(16),2007–2015 (2006).
    • 67  Dadachova E, Patel MC, Toussi S et al.: Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins. PLoS Med.3(11),E427 (2006).▪ Confluence of nuclear medicine, infectious disease and immunology. It shows how an antibody tagged with a lethal radioactive substance can be used to kill targeted cells.
    • 68  Gros L, Pelegrin M, Michaud H-A et al.: Endogenous cytotoxic T-cell response contributes to the long-term antiretroviral protection induced by a short period of antibody-based immunotherapy of neonatally infected mice. J. Virol.82(3),1339–1349 (2008).
    • 69  Wittek R: Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy. Int. J. Infect. Dis.10(3),193–201 (2006).
    • 70  Hu WG, Nagata LP: Antibody gene-based prophylaxis and therapy for biodefense. Hum. Vaccine4(1),74–78 (2008).
    • 71  Ledizet M, Kar K, Foellmer HG et al.: Antibodies targeting linear determinants of the envelope protein protect mice against West Nile virus. J. Infect. Dis.196(12),1741–1748 (2007).
    • 72  Guillaume V, Contamin H, Logh P et al.: Antibody prophylaxis and therapy against Nipah virus infection. Vaccine17,1468–1473 (2006).
    • 73  Xu Z, Wei L, Wang L, Wang H, Jiang S: The in vitro and in vivo protective activity of monoclonal antibodies directed against Hantaan virus: potential application for immunotherapy and passive immunization. Biochem. Biophys. Res. Commun.298,552–558 (2002).
    • 74  Custer DM, Thompson E, Schmaljohn CS, Ksiazek TG, Hooper JW: Active and passive vaccination against hantavirus pulmonary syndrome with Andes virus M genome segment-based DNA vaccine. J. Virol.77,9894–9905 (2003).
    • 75  Medina RA, Mirowsky-Garcia K, Hutt J, Hjelle B: Ribavirin, human convalescent plasma and anti-β3 integrin antibody inhibit infection by Sin Nombre virus in the deer mouse model. J. Gen. Virol.88,493–505 (2007).
    • 76  Mupapa K, Massamba M, Kibadi K et al.: Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. J. Infect. Dis.179(Suppl. 1),S18-S23 (1999).
    • 77  Jahrling PB, Geisbert JB, Swearengen JR, Larsen T, Geisbert TW: Ebola hemorrhagic fever, evaluation of passive immuhotherapy in non-human primates. J. Infect. Dis.196(Suppl. 2),S400–S403 (2007).▪▪ With [78], demonstrates that the much hyped alleviation of viral hemorrhagic diseases by using antibody transfusions postexposure may not be completely correct.
    • 78  Oswald WB, Geisbert TW, Davis KJ et al.: Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog.3(1),e9 (2007).▪▪ With [77], demonstrates that the much hyped alleviation of viral hemorrhagic diseases by using antibody transfusions postexposure may not be completely correct.
    • 79  Guidotti LG, Ando K, Hobbs et al.: Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc. Natl Acad. Sci. USA91(9),3764–3768 (1994).▪▪ Demonstrated for the first time that cytotoxic T lymphocytes (CTLs), which are unable to penetrate tissue parenchyma, can control pathogens via secretion of IFN-γ.
    • 80  Tovey MG, Lallemand G, Thyphronitis G: Adjuvant activity of type I interferons. Biol. Chem.389(5),541–555 (2008).
    • 81  Firpi RJ, Nelson DR: Current and future hepatitis C therapies. Arch. Med. Res.38,678–690 (2007).
    • 82  Deutsch M, Hadziyannis SJ: Old and emerging therapies in chronic hepatitis C: an update. J. Viral Hepat.15(1),2–11 (2008).
    • 83  Ferir G, Kaptein S, Neyts J, De Clercq E: Antiviral treatment of chronic hepatitis B virus infections: the past, the present and the future. Rev. Med. Virol.18(1),19–34 (2008).
    • 84  Subramaniam GM, Fiscella M, Lahouse-Smith A, Zeuzem S, McHutchison JG: Alβinterferon-α: a genetic fusion protein for the treatment of chronic hepatitis C. Nat. Biotechnol.25(12),1411–1419 (2007).
    • 85  Melian EB, Plosker GL: Interferon alfacon-1: a review of its pharmacology and therapeutic efficacy in the treatment of chronic hepatitis C. Drugs61,1661–1691 (2001).
    • 86  Robek MD, Boyd BS, Chisari FV: l interferon inhibits hepatitis B and C virus replication. J. Virol.79(6),3851–3854 (2005).
    • 87  Buckwold VE, Wei J, Huang Z et al.: Antiviral activity of CHO-SS cell-derived human o interferon and other human interferons against HCV RNA replicons and related viruses. Antiviral Res.73(2),118–125 (2007).
    • 88  Pagliaccetti NE, Eduardo R, Kleinstein SH, Mu XJ, Bandi P, Robek MD: Interleukin-29 functions cooperatively with interferon to induce antiviral gene expression and inhibit hepatitis C virus replication. J. Biol. Chem.283(44),30079–30089 (2008).
    • 89  Larkin J, Jin L, Farmen M et al.: Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system. Interferon Cytokine Res.23(5),247–257 (2003).
    • 90  Jia Y, Wei L, Jiang D, Wang J, Cong X, Fei R: Antiviral action of interferon-α against hepatitis C virus replicon and its modulation by interferon-γ and interleukin-8. J. Gastroenterol. Hepatol.22(9),1278–1285 (2007).
    • 91  Borden EC, Sen GC, Uze G et al.: Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug Discov.6,975–990 (2007).
    • 92  Frese M, Pietschmann T, Moradpour D, Haller O, Bartenschlager R: interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J. Gen. Virol.82(4),723–733 (2001).
    • 93  Kato J, Kato N, Moriyama M et al.: Interferons specifically suppress the translation from the internal ribosome entry site of hepatitis C virus through a double-stranded RNA-activated protein kinase-independent pathway. J. Infect. Dis.186(2),155–163 (2002).
    • 94  Taylor DR, Puig M, Darnell ME, Mihalik K, Feinstone SM: New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. J. Virol.79(10),6291–6298 (2005).
    • 95  Jiang D, Guo H, Xu C et al.: Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J. Virol.82(4),1665–1678 (2008).
    • 96  Frese M, Schwarzle V, Barth K et al.: interferon-γ inhibits replication of sugenomic and genomic hepatitis C virus RNAs. Hepatology35(3),694–703 (2002).
    • 97  Guo JT, Sohn JA, Zhu Q, Seeger C: Mechanism of interferon α response against hepatitis C virus replicons. Virology325(1),71–81 (2004).
    • 98  Prabhu R, Joshi V, Garry RF et al.: interferon-α inhibits negative-strand RNA and protein expression from full-length HCV1a infectious clone. Exp. Mol. Pathol.76(3),242–252 (2004).
    • 99  Dash S, Prabhu R, Hazari S et al.: Interferons α, β, γ each inhibit hepatitis C virus replication at the level of internal ribosome entry site-mediated translation. Liver Int.25(3),580–594 (2005).
    • 100  Kronenberger B, Ruster B, Elez R et al.: Interferon a down-regulates CD81 in patients with chronic hepatitis C. Hepatology33(6),1518–1526 (2001).
    • 101  Murao K, Imachi H, Yu X et al.: Interferon a decreases expression of human scavenger receptor class BI, a possible HCV receptor in hepatocytes. Gut57(5),664–671 (2008).
    • 102  Cheng PN, Wei YL, Chang TT, Chen JS, Young KC: Therapy with interferon-α and ribavirin for chronic hepatitis C virus infection upregulates membrane HLA-ABC, CD86, and CD28 on peripheral blood mononuclear cells. J. Med. Virol.80(6),989–996 (2008).
    • 103  Kamal SM, Fehr J, Roesler B, Peters T, Rasenack JW: Peginterferon alone or with ribavirin enhances HCV-specific CD4 T-helper 1 responses in patients with chronic hepatitis C. Gastroenterology123(4),1070–1083 (2002).
    • 104  Marinho RT, Pinto R, Santos ML, Lobos IV, Moura MC: Effects of interferon and ribavirin combination therapy on CD4+ proliferation, lymphocyte activation, and Th1 and Th2 cytokine profiles in chronic hepatitis C. J. Viral Hepat.11(3),206–216 (2004).
    • 105  Tan H, Derrick J, Hong J, Sanda C et al.: Global transcriptional profiling demonstrated the combination of type I and type II interferon enhances antiviral and immune responses at clinically relevant doses. J. Interferon Cytokine Res.25(10),632–649 (2005).
    • 106  Wang T, Blatt LM, Seiwert SD: Immunomodulatory activities of IFN-γ1b in combination with type I IFN: implications for the use of IFN-γ1b in the treatment of chronic HCV infections. J. Interferon Cytokine Res.26(7),473–483 (2006).
    • 107  Bharati K, Appaiahgari MB, Vrati S: Effect of cytokine-encoding plasmid delivery on immune response to Japanese encephalitis virus DNA vaccine in mice. Microbiol. Immunol.49(4),349–353 (2005).
    • 108  Rompato G, Ling E, Chen Z, Van Kruiningen H, Garmendia AE: Positive inductive effect of IL-2 on virus-specific cellular responses elicited by a PRRSV-ORF7 DNA vaccine in swine. Vet. Immunol. Immunopathol.109(1–2),151–160 (2006).
    • 109  Tarpey I, van Loon AA, de Haas N et al.: A recombinant turkey herpesvirus expressing chicken interleukin-2 increases the protection provided by in ovo vaccination with infectious bursal disease and infectious bronchitis virus. Vaccine25(51),8529–8535 (2007).
    • 110  Tang M, Wang H, Zhou S, Tian G: Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2. J. Virol. Methods149(1),42–48 (2008).
    • 111  Zhang HY, Sun SH, Guo YJ et al.: Optimization strategy for plasmid DNAs containing multiple epitopes of foot-and-mouth disease virus cis-expression with IL-2. Vaccine26(6),769–777 (2008).
    • 112  Pestka S, Krause CD, Sarkar D et al.: Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol.22,929–979 (2005).
    • 113  Ejrnaes M, Filippi CM, Martinic MM et al.: Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med.203(11),2461–2472 (2006).
    • 114  Zeuzem S, Hopf U, Carreno V et al.: A Phase I/II study of recombinant human interleukin-12 in patients with chronic hepatitis C. Hepatology29(4),1280–1287 (1999).
    • 115  Zhu H, Liu C: Interleukin-1 inhibits hepatitis C virus subgenomic RNA replication by activation of extracellular regulated kinase pathway. J. Virol.77(9),5493–5498 (2003
    • 116  Kumar H, Kawai T, Akira S: Pathogen recognition in the innate immune response. Biochem. J.420(1),1–16 (2009).
    • 117  Horsmans Y, Berg T, Desager JP et al.: Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology42(3),724–731 (2005).
    • 118  Jacobson IM, Ghalib R, Lawitz E et al.: Early viral response and on treatment response to CPG 10101 (ACTILONTM), in combination with pegylated interferon and/or ribavirin, in chronic HCV genotype 1 infected patients with prior relapse response. J. Hepatol.44(Suppl. 2), Abstract 96 (2006).
    • 119  McHutchison JG, Bacon BR, Gordon SC et al.: Final results of a multi-center Phase 1b, randomized, placebo-controlled, dose-escalation trial of CPG 10101 in patients with chronic hepatitis C virus. J. Hepatol.44(Suppl. 2), Abstract 111 (2006).
    • 120  Averett DR, Fletcher SP, Li W, Webber SE, Appleman JR: The pharmacology of endosomal TLR agonists in viral disease. Biochem. Soc. Trans.35(Pt 6),1468–1472 (2007).
    • 121  Miller RL, Meng TC, Tomai MA: The antiviral activity of Toll-like receptor 7 and 7/8 agonists. Drug News Perspect.21(2),69–87 (2008).
    • 122  Hammerbeck DM, Burleson GR, Schuller CJ et al.: Administration of a dual Toll-like receptor 7 and Toll-like receptor 8 agonist protects against influenza in rats. Antiviral Res.73(1),1–11 (2007).
    • 123  Vijay-Kumar M, Aitken JD, Sanders CJ et al.: Flagellin treatment protects against chemicals, bacteria, viruses, and radiation. J. Immunol.180(12),8280–8285 (2008).
    • 124  Karlsson H, Brewin J, Kinnon C, Veys P, Amrolia PJ: Generation of trespecific cytotoxic T cells recognizing cytomegalovirus, adenovirus, and Epstein–Barr virus: an approach for adoptive immunotherapy of multiple pathogens. J. Immunother.30(5),544–556 (2007).
    • 125  Fujita Y, Rooney CM, Heslop HE: Adoptive cellular immunotherapy of viral diseases. Bone Marrow Transplant.41(2),193–198 (2008).
    • 126  Riddell SR, Greenberg PD: Principles for adoptive T cell therapy of human viral diseases. Annu. Rev. Immunol.13,545–586 (1995).
    • 127  Hegde NR, Chevalier MS, Johnson DC: Viral inhibition of MHC class II antigen presentation. Trends Immunol.24(5),278–285 (2003).
    • 128  Riddell SR, Watanabe KS, Goodrich JM et al.: Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science257(5067),238–241 (1992).▪▪ Seminal study in cellular immunotherapy, and along with [130], demonstrated that adoptively transferred CTLs home to infected areas and actively restore immune functions.
    • 129  Kapp M, Tan SM, Einsele H, Grigoleit G: Adoptive immunotherapy of HCMV infection. Cytotherapy9(8),699–711 (2007).
    • 130  Heslop HE, Ng CYC, Li C et al.: Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat. Med.2,551–555 (1996).▪▪ Seminal study in cellular immunotherapy, and along with [128], the demonstrated that adoptively transferred CTLs home to infected areas and actively restore immune functions.
    • 131  Rooney CM, Smith CA, Ng CY et al.: Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood92,1549–1555 (1998).
    • 132  Peggs KS, Mackinnon S: Augmentation of virus-specific immunity after hemato-poietic stem cell transplantation by adoptive T-cell therapy. Hum. Immunol.65,550–557 (2004).
    • 133  Leen AM, Myers GD, Bollard CM et al.: T-cell immunotherapy for adenoviral infections of stem-cell transplant recipients. Ann. NY Acad. Sci.1062,104–115 (2005).
    • 134  Lenaerts L, Kelchtermans H, Geboes L et al.: Recovery of humoral immunity is critical for successful antiviral therapy in disseminated mouse adenovirus type 1 infection. Animicrob. Agents Chemo.52(4),1462–1471 (2008).
    • 135  Cannon MJ, Stott EJ, Taylor G, Askonas BA: Clearance of persistent respiratory syncytial virus infections in immunodeficient mice following transfer of primed T cells. Immunology62(1),133–138 (1995).
    • 136  Saha K, Wong PK: Protective role of cytotoxic lymphocytes against murine leukemia virus-induced neurologic disease and immunodeficiency is enhanced by the presence of helper T cells. Virology188(2),921–925 (1992).
    • 137  Lamontagne L, Jolicoeur P, Decarie D, Menezes J: Effect of adoptive transfer of CD4, CD8 and B cells on recovery from MHV3-induced immunodeficiencies. Immunology88(2),220–229 (1996).
    • 138  Mackinnon S, Thomson K, Verfuerth S, Peggs K, Lowdell M: Adoptive cellular therapy for cytomegalovirus infection following allogeneic stem cell transplantation using virus-specific T cells. Blood Cells Mol. Dis.40(1),63–67 (1008).
    • 139  Levine BL, Cotte J, Small CC et al.: Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J. Hematother.7(5),437–448 (1998).
    • 140  Melenhorst JJ, Solomon SR, Shenoy A et al.: Robust expansion of viral antigen-specific CD4+ and CD8+ T cells for adoptive T cell therapy using gene-modified activated T cells as antigen presenting cells. J. Immunother.29(4),436–443 (2006).
    • 141  Joseph A, Zheng JH, Follenzi A et al.: Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J. Virol.82(6),3078–3089 (2008).
    • 142  Hofmann C, Harrer T, Kubesch V et al.: Generation of HIV-1-specific T cells by electroporation of T-cell receptor RNA. AIDS22(13),1577–1582 (2008).
    • 143  Hart DP, Xue SA, Thomas S et al.: Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells. Gene Ther.15(8),625–631 (2008).
    • 144  Engels B, Uckert W: Redirecting T lymphocyte speficicity by T cell receptor gene transfer – a new era for immunotherapy. Mol. Aspects Med.28(1),115–142 (2007).
    • 145  Sadelain M, Riviere I, Brentjens R: Targeting tumours with genetically enhanced T lympho- cytes. Nat. Rev. Cancer3,35–45 (2003).
    • 146  Bohne F, Chmielewski M, Ebert G et al.: T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology134(1),239–247 (2008).
    • 147  Bradfute SB, Warfield KL, Bavari S: Functional CD8+ T-cell responses in lethal Ebola virus infection. J. Immunol.180(6),4058–4066 (2008).
    • 148  Baur K, Rauer M, Richter K et al.: Antiviral CD8 T cells recognize Borna disease virus antigen transgenically expressed in either neurons or astrocytes. J. Virol.82(6),3099–3108 (2008).
    • 149  Dixon JE, Allan JE, Doherty PC: The acute inflammatory process in murine lymphocytic choriomeningitis is dependent on Lyt-2+ immune T cells. Cell. Immunol.107(1),8–14 (1987).
    • 150  Graham BS, Bunton LA, Wright PF, Karzon DT: Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest.88(3),1026–1033 (1991).
    • 151  Whitmire JK, Eam B, Whitton JL: Tentative T cells: memory cells are quick to respond, but slow to divide. PLoS Pathog.4(4),e1000041 (2008).▪▪ Busts the myth regarding the rapidity of the immune response. Demonstrates that the rapid increase in number of T cells during a recall response is probably due to precursor frequency.
    • 152  Holtappels R, Janda J, Thomas D, Schenk S, Reddehase MJ, Geginat G: Adoptive CD8 T cell control of pathogens cannot be improved by combining protective epitope specificities. J. Infect. Dis.197(4),622–629 (2008).
    • 153  Chaudhri G, Pancharathan V, Bluethmann H, Karupiah G: Obligatory requirement for antibody in recovery from a primary poxvirus infection. J. Virol.80(13),6339–6344 (2006).
    • 154  Jiang WZ, Fan Y, Liu X et al.: Therapeutic potential of dendritic cell-based immunization against HBV in transgenic mice. Antiviral Res.77(1),50–55 (2008).
    • 155  Chandy AG, Nurkkala M, Josefsson A, Eriksson K: Therapeutic dendritic cell vaccination with Ag coupled to cholera toxin in combination with intratumoural CpG injection leads to complete tumour eradication in mice bearing HPV 16 expressing tumours. Vaccine25(32),6037–6046 (2007).
    • 156  Masson F, Mount AM, Wilson NS, Belz GT: Dendritic cells: driving the differentiation programme of T cells in viral infections. Immunol. Cell Biol.86,33–342 (2008).
    • 157  Mosmann TR, Coffman RL: Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol.7,145–173 (1989).
    • 158  O’Quinn DB, Palmer MT, Lee YK, Weaver CT: Emergence of the Th17 pathway and its role in host defense. Adv. Immunol.99,115–163 (2008).
    • 159  Isa A, Lundqvist A, Lindblom A, Tolfvenstam T, Broliden K: Cytokine responses in acute and persistent human parvovirus B19 infection. Clin. Exp. Immunol.147(3),419–425 (2007).
    • 160  Penna A, Del Prete G, Cavalli A et al.: Predominant T-helper 1 cytokine profile of hepatitis B virus nucleocapsid-specific T cells in acute self-limited hepatitis B. Hepatology25(4),1022–1027(1997).
    • 161  Antonaci S, Piazzolla G, Napoli N, Vella FS, Fiore G, Schiraldi O: Relationship between T lymphocyte responsivemess and T-helper1/T-helper2 cytokine release in chronic hepatitis C: a critical reappraisal. Microbes106(415),203–212 (2001).
    • 162  Leipner C, Grun K, Borchers M, Stelzner A: The outcome of coxsackievirus B3-(CVB3-) induced myocarditis is influenced by the cellular immune status. Herz.25(3),145–248 (2000).
    • 163  Torres Y, Medrano FJ, Rey C et al.: Evidence for a role of T-helper type 2 cytokines in the acquisition of human immunodeficiency virus syncytium-inducing phenotype. Eur. J. Clin. Invest.28(11),930–936 (1998).
    • 164  Dubin PJ, Kolls JK: Th17 cytokines and mucosal immunity. Immunol. Rev.226,160–171 (2008).
    • 165  Awasthi A, Murugaiyan G, Kuchroo VK: Interplay between effector Th17 and regulatory T cells. J. Clin. Immunol.28(6),660–670 (2008).
    • 166  Kohyama S, Ohno S, Isoda A et al.: IL-23 enhances host defense against vaccinia virus infection via a mechanism partly involving IL-17. J. Immunol.179(6),3917–3125 (2007).
    • 167  Kim B, Sarangi PP, Azkur AK, Kaistha SD, Rouse BT: Enhanced viral immunoinflammatory lesions in mice lacking IL-23 responses. Microbes Infection10(3),302–312 (2008).
    • 168  Weihler S, Proud D: Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am. J. Physiol. Lung Cell. Mol. Physiol.293(2),L505–L515 (2007).
    • 169  Hou W, Kang HS, Kim BS: Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection. J. Exp. Med.206(2),313–328 (2009).
    • 170  Hashimoto K, Durbin JE, Zhou W et al.: Respiratory syncytial virus infection in the absence of STAT1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. J. Allergy Clin. Immunol.116(3),550–557 (2005).
    • 171  Dodon MD, Li Z, Hamaia S, Gazzolo L: Tax protein of human T-cell leukaemia virus type 1 induces interleukin 17 gene expression in T cells. J. Gen. Virol.85(Pt 7),1921–1932 (2004).
    • 172  Cabrera R, Tu Z, Xu Y et al.: An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection. Hepatology40(5),1062–1071 (2004).
    • 173  Furuichi Y, Tokuyama H, Ueha S et al.: Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+ T cell response primed by DNA immunization. World J. Gastroenterol.11(24),3772–3777 (2005).
    • 174  Suvas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT: CD4+CD25+ regulatory T cells control the severity of viral immuno-inflammatory lesions. J. Immunol.172(7),4123–4132 (2004).
    • 175  Fernandez MA, Puttur FK, Wang YM et al.: T regulatory cells contribute to the attenuated primary CD8+ and CD4+ T-cell responses to herpes simplex virus type 2 in neonatal mice. J. Immunol.180(3),1556–1564 (2008).
    • 176  Beilharz MW, Sammels LM, Paun A et al.: Timed ablation of regulatory CD4+ T cells can prevent murine AIDS progression. J. Immunol.172(8),4917–4925 (2008).
    • 177  Korn T, Bettelli E, Oukka M, Kuchroo VK: IL-17 and Th17 cells. Innu. Rev. Immunol.27,485–517 (2008).
    • 178  Favre D, Lederer S, Kanwar B et al.: Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog.5(2),e1000295 (2009).
    • 179  Antons AK, Wang R, Kalams SA, Unutmaz D: Suppression of HIV-specific and allogeneic T cell activation by human regulatory T cells is dependent on the strength of signals. PLoS ONE3(8),e2952 (2008).
    • 180  Kay MA, Holterman AX, Meuse L et al.: Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat. Genet.11(2),191–197 (1995).
    • 181  Jooss K, Turka LA, Wilson JM: Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig. Gene Ther.5(3),309–319 (1998).
    • 182  Gangappa S, Manickan E, Rouse BT: Control of herpetic stromal keratitis using CTLA4Ig fusion protein. Clin. Immunol. Immunopathol.86(1),88–94 (1998).
    • 183  Onlamoon N, Plagman N, Rogers KA et al.: Anti-CD3/28 mediated expansion of macaque CD4+ T cells is polyclonal and provides extended survival after adoptive transfer. J. Med. Primatol.36(4–5),206–218 (2007).
    • 184  Levine BL, Mosca JD, Riley JL et al.: Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science272(5270),1939–1943 (2006).
    • 185  Matter M, Odermatt B, Yagita H, Nuoffer JM, Ochsenbein AF: Elimination of chronic viral infection by blocking CD27 signaling. J. Exp. Med.203(9),2145–2155 (2006).
    • 186  Ochsenbein AF, Riddell SR, Brown M et al.: CD27 expression promotes long-term survival of functional effector-memory CD8+ cytotoxic T lymphocytes in HIV-infected patients. J. Exp. Med.200(11),1407–1417 (2004).
    • 187  Bennett SR, Carbone FR, Karamalis RA et al.: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393,478–480 (1998).
    • 188  Gramaglia I, Weinberg AD, Lemon M, Croft M: Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T-cell responses. J. Immunol.161,6510–6517 (1998).
    • 189  Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393,480–483 (1998).
    • 190  Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M: The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol.165,3043–3050 (2000).
    • 191  Sarawar SR, Lee BJ, Reiter SK, Schoenberger SP: Stimulation via CD40 can substitute for CD4 T-cell function in preventing reactivation of a latent herpesvirus. Proc. Natl Acad. Sci. USA98,6325–6329 (2001).
    • 192  Bartholdy C, Kauffmann SO, Christensen JP, Thomsen AR: Agonistic anti-CD40 antibody profoundly suppresses the immune response to infection with lymphocytic choriomeningitis virus. J. Immunol.178,1662–1670 (2007).
    • 193  Humphreys IR, Loewendorf A, de Trez et al.: OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T cells: a CD4-dependent mechanism. J. Immunol.179(4),2195–2202 (2007).
    • 194  Wedemeyer H, He XS, Nascimbeni M et al.: Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J. Immunol.169(6),3447–3458 (2002).
    • 195  Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T: PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med.198,39–50 (2003).
    • 196  Golden-Mason L, Palmer B, Klarquist J, Mengshol JA, Castelbalnco N, Rosen HR: Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J. Virol.81,9249–9258 (2007).
    • 197  Maier HM, Isogawa J, Freeman GJ, Chisari FV: PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver. J. Immunol.178,2714–2720 (2007).
    • 198  Radziewicz H, Ibegbu CC, Fernandez ML et al.: Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J. Virol.81,2545–2553 (2007).
    • 199  Goldberg MV, Maris CH, Hipkiss EL et al.: Role of PD-1 and its ligand, B7–H1, in early fate decisions of CD8 T cells. Blood110,186–192 (2007).
    • 200  Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ: The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol.8,239–245 (2007).
    • 201  Lukens JR, Cruise MW, Lassen MG, Hahn YS: Blockade of PD-1/H7-H1 interaction restores effector CD8+ T-cell responses in a hepatitis C virus core murine model. J. Immunol.180(7),4875–4884 (2008).
    • 202  Nakamoto N, Kaplan DE, Coleclough J et al.: Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology134(7),1927–1937 (2008).
    • 203  Urbani S, Amadei B, Tola D et al.: Restoration of HCV-specific T-cell functions by PD-1/PD-L1 blockade in HCV infection: effect of viremia levels and antiviral treatment. J. Hepatol.48(4),548–558.
    • 204  Ha SJ, Mueller SN, Wherry EJ et al.: Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med.205(3),543–555 (2008).
    • 205  Nakamoto N, Cho H, Shaked A et al.: Reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog.5(2),E1000313 (2009).
    • 206  Fallon PG, Alcami A: Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol.27(10),470–476 (2006).
    • 207  Viswanathan K, Richardson J, Togonu-Bickersteth B et al.: Myxoma viral serpin, Serp-1, inhibits human monocyte adhesion through regulation of actin-binding protein filamin B. J. Leukoc. Biol.85(3),418–426 (2009).
    • 208  Richardson M, Liu L, Dunphy L et al.: Viral serpin, Serp-1, inhibits endogenous angiogenesis in the chicken chorioallantoic membrane model. Cardiovasc. Pathol.16(4),191–202 (2007).
    • 209  Lucas A, Liu L, Macen J et al.: Virus-encoded serine proteinase inhibitor SERP-1 inhibits athero-sclerotic plaque development after balloon angioplasty. Circulation94,2890–2900 (1996).
    • 210  Maksymowych WP, Nation N, Nash P et al.: Amelioration of antigen induced arthritis in rabbits treated with a secreted viral serine proteinase inhibitor. J. Rheumatol.23,878–882 (1996).
    • 211  Miller LW, Dai E, Nash P et al.: Inhibition of transplant vasculopathy in a rat aortic allograft model after infusion of anti-inflammatory viral serpin. Circulation101,1598–1605 (2000).
    • 212  Hausen B, Boeke K, Berry GJ, Morris RE: Viral serine proteinase inhibitor (SERP-1) effectively decreases the incidence of graft vasculopathy in heterotopic heart allografts. Transplantation72,364–368 (2001).
    • 213  Kotwal GJ, Lahiri DK, Hicks R: Potential intervention by vaccinia virus complement control protein of the signals contributing to the progression of central nervous system injury to Alzheimer’s disease. Ann. NY Acad. Sci.973,317–322 (2002).
    • 214  Jha P, Kotwal GJ: Vaccinia complement control protein: multi-functional protein and a potential wonder drug. J. Biosci.28,265–271 (2003).
    • 215  Pillay NS, Kellaway LA, Kotwal GJ: Vaccinia virus complement control protein significantly improves sensorimotor function recovery after severe head trauma. Brain Res.1153,158–165 (2007).
    • 216  Dabbagh K, Xiao Y, Smith C et al.: Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC chemokine inhibitor vCCI. J. Immunol.165,3418–3422 (2000).
    • 217  DeBruyne LA, Li K, Bishop DK, Bromberg JS: Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity. Gene Ther.7,575–582 (2000).
    • 218  Ghirnikar RS, Lee YL, Eng LF: Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J. Neurosci. Res.59,63–73 (2001).
    • 219  Takami S, Minami M, Nagata I, Namura S, Satoh M: Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab.21,1430–1435 (2001).
    • 220  Bédard EL, Kim P, Jiang J et al.: Chemokine-binding viral protein M-T7 prevents chronic rejection in rat renal allografts. Transplantation76(1):249–252 (2003).
    • 221  Fu S, Chen D, Mao X et al.: Feline immunodeficiency virus-mediated viral interleukin-10 gene transfer prolongs non-vascularized cardiac allograft survival. Am. J. Transplant.3(5),552–561 (2003).
    • 222  Reading PC, Symons JA, Smith GL: A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J. Immunol.170(3),1435–1442 (2003).
    • 223  Liu L, Dai E, Miller L et al.: Viral chemokine-binding proteins inhibit inflammatory responses and aortic allograft transplant vasculopathy in rat models. Transplantation77,1652–1660 (2004).
    • 224  Pyo R, Jensen KK, Wiekowski MT et al.: Inhibition of intimal hyperplasia in transgenic mice conditionally expressing the chemokine-binding protein M3. Am. J. Pathol.164,2289–2297 (2004).
    • 225  Boomker JM, Luttikhuizen DT, Veninga H et al.: The modulation of angiogenesis in the foreign body response by the poxviral protein M-T7. Biomaterials26(23),4874–4881 (2005).
    • 226  Jamieson T, Cook DN, Nibbs RJ et al.: The chemokine receptor D6 limits the inflammatory response in vivo. Nat. Immunol.6,403–411 (2005).
    • 227  McCoy SL, Kurtz SE, Macarthur CJ, Trune DR, Hefeneider SH: Identification of a peptide derived from vaccinia virus A52R protein that inhibits cytokine secretion in response to TLR-dependent signaling and reduces in vivo bacterial induced inflammation. J. Immunol.174,3006–3014 (2005).
    • 228  Pillai RG, Beutelspacher SC, Larkin DF, George AJ: Expression of the chemokine antagonist vMIP II using a non-viral vector can prolong corneal allograft survival. Transplantation85(11),1640–1647 (2008).
    • 229  Ait-Oufella H, Horvat B, Kerdiles Y et al.: Measles virus nucleoprotein induces a regulatory immune response and reduces atherosclerosis in mice. Circulation116(15),1707–1713 (2007).
    • 230  Hegde NR, Chevalier M, Johnson DC: Viral inhibition of MHC class II antigen presentation. Trends Immunol.24(5),278–285 (2003).
    • 231  Powers C, DeFilippis V, Malouli D, Fruh K: Cytomegalovirus immune evasion. Curr. Top. Microbiol. Immunol.325,333–359 (2008).
    • 232  Radosevich TJ, Seregina T, Link CJ: Effective suppression of class I major histocompatibility complex expression by the US11 or ICP47 genes can be limited by cell type or interferon-γ exposure. Hum. Gene Ther.14(18),1765–1775 (2003).
    • 233  Lee EM, Kim JY, Cho BR et al.: Down-regulation of MHC class I expression in human neuronal stem cells using viral stealth mechanism. Biochem. Biophys. Res. Commun.326(4),825–835 (2005).
    • 234  Boyer JF, Nath B, Schumann K et al.: IL-4 increases simian immunodeficiency virus replication despite enhanced SIV immune responses in infected rhesus macaques. Int. Parasitol.32(5),543–550 (2002).
    • 235  Stahl-Hennig C, Tundlach BR, Dittmer U et al.: Replication, immunogenicity, and protective properties of live-attenuated simian immunodeficiency viruses expressing Interleukin-4 or interferon-γ. Virology305(2),473–485 (2003).
    • 236  Amara RR, Ibegbu C, Villinger F et al.: Studies using viral challenge and CD8 T cell depletions on the roles of cellular and humoral immunity in the control of an SHIV-89.6P challenge in DNA/MVA-vaccinated macaques. Virology343(2),246–255 (2005).
    • 237  Vittecoq D, Chevret S, Morand-Joubert L: Passive immunotherapy in AIDS: a double-blind randomized study based on transfusions of plasma rich in anti-human immunodeficiency virus 1 antibodies vs. transfusions of seronegative plasma. Proc. Natl Acad. Sci. USA92(4),1195–1199 (1995).
    • 238  Blick G, Scott WF, Crook SW et al.: Passive immunotherapy in advanced HIV infection and therapeutic plasmapheresis in asymptomatic HIV-positive individuals: a four-year clinical experience. Biotherapy11(1),7–14 (1998).
    • 239  Reimann KA, Cate RL, Wu Y et al.: In vivo administration of CD4-specific monoclonal antibody: effect on provirus load in rhesus monkeys chronically infected with the simian immunodeficiency virus of macaques. AIDS Res. Hum. Retroviruses11(4),517–525 (1995).
    • 240  Gauduin MC, Parren PA, Weir R et al.: Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mcie against challenge by primary isolates or HIV-1. Nat. Med.3(12),1389–1393 (1997).
    • 241  Shibata R, Igarashi T, Haigwood N et al.: Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med.5(2),204–210 (1999).
    • 242  Stiegler G, Armbruster C, Vcelar B et al.: Antiviral activity of the neutralizing antibodies 2F5 and 2G12 in asymptomatic HIV-1-infected humans: a Phase I evaluation. AIDS16(15),2019–2025 (2003).
    • 243  Zhang L, Ribeiro RM, Mascola JR et al.: Effects of antibody on viral kinetics in simian/human immunodeficiency virus infection: implications for vaccination. J. Virol.78(10),5520–5522 (2004).
    • 244  Eda Y, Murakami T, Ami Y et al.: Anti-V3 humanized antibody KD-247 effectively suppresses ex vivo generation of human immunodeficiency virus type 1 and affords sterile protection of monkeys against heterologous simian/human immunodeficiency virus infection. J. Virol.80(11),5563–5570 (2006).
    • 245  Mahendru S, Vcelar B, Wrin T et al.: Adjunctive passive immunotherapy in human immunodeficiency virus type 1-infected individuals treated with antiviral therapy during acute and early infection. J. Virol.81(20):11016–11031 (2007).
    • 246  Mascola JR, Lewis MG, VanCott TC et al.: Cellular immunity elicited by human immunodeficiency virus type 1/simian immunodeficiency virus DNA vaccination does not augment the sterile protection afforded by passive infusion of neutralizing antibodies. J. Virol.77(19),10348–10356 (2003).
    • 247  Veazev RS, Shattock RJ, Pope M et al.: Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat. Med.9(3),343–346 (2003).
    • 248  Van Rompay KK, Berardi CJ, Dillard-Telm S et al.: Passive immunization of newborn rhesus macaques prevents oral simial immunodeficiency virus infection. J. Infect. Dis.177(5),1247–1259 (1998).
    • 249  Hofmann-Lehmann R, Vlasak J, Rasmussen RA et al.: Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian–human immunodeficiency virus challenge. J. Virol.75(16),7470–7480 (2001).
    • 250  Ferrantellli F, Buckley KA, Rasmussen RA et al.: Time dependence of protective post-exposure prophylaxis with human monoclonal antibodies against pathogenic SHIV challenge in hewborn macaques. Virology358(1),69–78 (2007).
    • 251  Kinter AL, Bende SM, Hardy EC, Jackson R, Fauci AS: Interleukin 2 induces CD8+ T cell-mediated suppression of human immunodeficiency virus replication in CD4+ T cells and this effect overrides its ability to stimulate virus expression. Proc. Natl Acad. Sci. USA92(24),10985–10989 (1995).
    • 252  Nacsa J, Edghill-Smith Y, Tsai WP et al.: Contrasting effects of low-dose IL-2 on vaccine-boosted simian immunodeficiency virus (SIV)-specific CD4+ and CD8+ T cells in macaques chronically infected with SIVmac251. J. Immunol.174(4),1913–1921 (2005).
    • 253  Marchetti G, Meroni L, Varchetta S et al.: Low-dose prolonged intermittent interleukin-2 adjuvant therapy: results of a randomized trial among human immunodeficiency virus-positive patients with advanced immune impairment. J. Infect. Dis.186(5),606–616 (2002).
    • 254  Read SW, Lempicki RA, Di Mascio M et al.: CD4 T cell survival after intermittent interleukin-2 therapy is predictive of an increase in the CD4 T cell count of HIV-infected patients. J. Infect. Dis.198(843),850 (2008).
    • 255  Lévy Y, Gahéry-Ségard H, Durier C et al.: Immunological and virological efficacy of a therapeutic immunization combined with interleukin-2 in chronically HIV-1 infected patients. AIDS19(3),279–286 (2005).
    • 256  Miller KD, Spooner K, Herpin BR et al.: Immunotherapy of HIV-infected patients with intermittent interleukin-2: effects of cycle frequency and cycle duration on degree of CD4+ T-lymphocyte expansion. Clin. Immunol.99(1),30–42 (2001).
    • 257  Hengge UR, Borchard C, Esser S et al.: Lymphocytes proliferate in blood and lymph nodes followign interleukin-2 therapy in addition to highly active antiretroviral therapy. AIDS16(2),151–160 (2002).
    • 258  Marchetti G, Meroni L, Molteni C et al.: IL-7/IL-7 receptor system regulation following IL-2 immunotherapy in HIV-infected patients. Antivir. Ther.9(3),447–452 (2004).
    • 259  Nugeyre MT, Monceaux V, Beq S et al.: IL-7 stimulates T cell renewal without increasing viral replication in simian immunodeficiency virus-infected macaques. J. Immunol.171(8),4447–4453 (2003).
    • 260  Durier C, Capitant C, Lascaux AS et al.: Long-term effects of intermittent interleukin-2 therapy in chronic HIV-infected patients (ANRS 048–079 Trials). AIDS21(14),1887–1897 (2007).
    • 261  Martinez-Mariño B, Shiboski S, Hecht FM, Kahn JO, Levy JA: Interleukin-2 therapy restores CD8 cell non-cytotoxic anti-HIV responses in primary infection subjects receiving HAART. AIDS18(15),1991–1999 (2008).
    • 262  Mitsuyasu RT, Anton PA, Deeks SG et al.: Prolonged survival and tissue trafficking following adoptive transfer of CD4z gene-modified autologous CD4+ and CD8+ T cells human immunodeficiency virus-infected subjects. Blood96(3),785–793 (2000).
    • 263  Caggiari L, Zanussi S, Crepaldi C et al.: Different rates of CD4+ and CD8+ T-cell proliferation in interleukin-2 treated human immunodeficiency virus-positive subjects. Sytometry46(4),233–237 (2001).
    • 264  Marchetti G, Meroni L, Molteni C et al.: Interleukin-2 immunotherapy exerts a differential effect on CD4 and CD8 T cell dynamics. AIDS18(2),211–216 (2004).
    • 265  Kilby JM, Bucy RP, Mildvan D et al.: A randomized, partially blinded Phase 2 trial of antiretroviral therapy, HIV-specific immunizations, and interleukin-2 cycles to promote efficient control of viral replication (ACTG A5024). J. Infect. Dis.194(12),1672–1676 (2006).
    • 266  Hardy GA, Imami N, Nelson MR et al.: A Phase I, randomized study of combined IL-2 and therapeutic immunisation with antiretroviral therapy. J. Immune Based Ther. Vaccines5,6 (2007).
    • 267  Smith KA, Andjelic S, PopmihajlivZ et al.: Immunotherapy with canarypox vaccine and interleukin-2 for HIV-1 infection: termination of a randomized trial. PLoS Clin. Trials2(1),e5 (2007).
    • 268  Marchetti G, Tincati C, Monforte A, Gori A: The challenge of IL-2 immunotherapy in HIV disease: ‘no through road’ or turning point? Curr. HIV Res.6(3),189–199 (2008).
    • 269  Beq S, Nugeyre MT, Ho Tsong Fang R et al.: IL-7 induces immunological improvement in SIV-infected rhesus macaques under antiviral therapy. J. Immunol.176(2),914–922 (2006).
    • 270  Nielsen SD, Afzelius P, Dan-larsen S et al.: Effect of granulocyte colony-stimulating factor (G-CSF) in human immunodeficiency virus-infected patients: increase in numbers of naive CD4 cells and CD34 cells makes G-CSF a candidate for use in gene therapy or to support antiretroviral therapy. J. Ijfect. Dis.177(6),1733–1736 (1998).
    • 271  Boyer JD, Cohen AD, Ugen KE et al.: Therapeutic immunization of HIV-infected chimpanzees using HIV-1 plasmid antigens and interleukin-12 expressing plasmids. AIDS14(11),1515–1522 (2000).
    • 272  Kim JJ, Yang JS, Manson KH, Weiner DB: Modulation of antigen-specific cellular immune responses to DNA vaccination in rhesus macaques through the use of IL-2, IFN-β, or IL-4 gene adjuvants. Vaccine19(17–19),2496–2505 (2001).
    • 273  Boyer JD, Robinson TM, Kutzler MA et al.: Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coiimunzation with SHIV antigen and IL-15 plasmid. Proc. Natl Acad. Sci. USA104(47),18648–81653 (2007).
    • 274  Halwani R, Boyer JD, Yassine-Diab B et al.: Therapeutic vaccination with simian immunodeficiency virus (SIV)-DNA + IL-12 or IL-15 induces distinct CD8 memory subsets in SIV-infected macaques. J. Immunol.180(12),7969–7979 (2008).
    • 275  Hirao LA, Wu L, Khan AS et al.: Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine26(25),3112–3120 (2008).
    • 276  Iida T, Kuwata T, Ui M et al.: Augmentation of antigen-specific cytokine responses in the early phase of vaccination with a live-attenuated simian/human immunodeficiency chimeric virus expressing IFN-γ. Arch. Virol.149(4),743–757 (2004).
    • 277  Kaneyasu K, Kita M, Ohkura S et al.: Protective efficacy of nonpathogenic nef-deleted SHIV vaccination combined with recombinant IFN-γ administration against a pathogenic SHIV challenge in rhesus monkeys. Microbiol. Immunol.49(12),1083–1094 (2005).
    • 278  Stylianou E, Aukrust P, Bendtzen K, Muller F, Froland SS: Interferons and interferon (IFN)-inducible protein 10 during highly active anti-retroviral therapy (HAART)-possible immunoruppressive role of IFN-α in HIV infection. Clin. Exp. Immunol.119(3),479–485 (2000).
    • 279  Song R, Liu S, Leong KW: Effects of MIP-1α, MIP-3α, and MIP-3β on the induction of HIV Gag-specific immune response with DNA vaccines. Mol. Ther.15(5),1007–1015 (2007).
    • 280  Shimizu Y, Inaba K, Kaneyasu K et al.: A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expressed the RANTES gene improves the magnitude of cellular immunity in rhesus macaques. Virology361(1),68–79 (2007).
    • 281  Hryniewicz A, Boasso A, Edghill-Smith Y et al.: CTLA-4 blockade decreases TGF-β, IDO, and viral RNA expression in tissues of SIVmac251-infected macaques. Blood108(12),3834–3842 (2006).
    • 282  Onlamoon N, Rogers K, Mayne AE et al.: Soluble PD-1 rescues the proliferative response of simian immunodeficiency virus-specific CD4 and CD8 T cells during chronic infection. Immunology124(2),277–293 (2008).
    • 283  Kaufmann DE, Kavanagh DG, Pereyra F et al.: Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol.8(11),1246–1254 (2007).
    • 284  Yamamoto N, Ushijima N, Koga Y: Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF). J. Med. Virol.81(1),16–26 (2009).
    • 285  Bex F, Hermans P, Sprecher S et al.: Syngeneic adoptive transfer oa anti-human immunodeficiency virus (HIV-1)-primed lmphocytes from a vaccinated HIV-seronegative individual to his HIV-1-infected identical twin. Blood84(10),3317–3326 (1994).
    • 286  Van Kuyk R, Torbett BE, Gulizia RJ, Leath S, Mosier DE, Koenig S: Cloned human CD8+ cytotoxic T lymphocytes protect human peripheral blood leukocyte-severe combined immunodifieicne mice from HIV-1 infection by an HLA-unrestricted mechanism. J. Immunol.153(10),4826–4833 (1994).
    • 287  McKinney DM, Lewinsohn DA, Riddell SR, Greenberg PD, Mosier DE: The antiviral activity of HIV-specific CD8+ CTL clones is limited by elimination due to encounter with HIV-infected targets. J. Immunol.613(2),861–867 (1999).
    • 288  Klimas N, Patarca R, Walling J et al.: Clinilcal and immunological changes in AIDS patients following adoptive therapy with activated autologous CD8 T cells and interleukin-2 infusion. AIDS8(8),1073–1081 (1994).
    • 289  Petrovas C, Mueller YM, Katsikis PD: HIV-specific CD8+ T cells: serial killers condemned to die? Curr HIV Res.2(2),153–162 (2004).
    • 290  Torpey D 3rd, Huang XL, Armstrong J et al.: Effects of adoptive immunotherapy with autologous CD8+ T lymphocytes on immunologic parameters: lymphocyte subsets and cytotoxic activity. Clin. Immunol. Immunopathol.68(3),263–272 (1993).
    • 291  van Lunzen J, Schmitz J, Dengler K, Kuhlmann C, Schmitz H, Dietrich M: Investigations on autologous T-cells for adoptive immunotherapy of AIDS. Adv. Exp. Med. Biol.374,57–70 (1995).
    • 292  Mealey RH, Fraser DG, Oaks JL, Cantor GH, McGuire TC: Immune reconstitution prevents continuous equine infectious anemia virus replication in an Arabian foal with severe combined immunodeficiency: lessons for control of lentiviruses. Clin. Immunol.101(2),237–247 (2001).
    • 293  Flynn JN, Pistello M, Isola P et al.: Adoptive immunotherapy of feline immunodefi-ciency virus with autologous ex vivo-stimulated lymphoid cells modulates virus and T-cell subsets in blood. Clin. Diag. Lab. Immunol.12(6),736–745 (2005).
    • 294  Brodie SJ, Lewinsohn DA, Patterson BK et al.: In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat. Med.5(1),34–41 (1999).
    • 295  Koenig S, Conley AJ, Brewah YA et al.: Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat. Med.1(4),330–336 (1995).
    • 296  Levine BL, Bernstein WB, Aronson NE et al.: Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat. Med.8(1),47–53 (2002).
    • 297  Vaccari M, Mattapallil J, Song K: Reduced protection from simian immunodeficiency virus SIVmac251 infection afforded by memory CD8+ T cells induced by vaccination during CD4+ T-cell deficiency. J. Virol.82(19),9629–9638 (2008).
    • 298  Brenchley JM, Paiardini M, Knox KS et al.: Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood112(7),2826–2835 (2008).
    • 299  Macal M, Sankaran S, Chun TW et al.: Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is assocaited with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses. Mucosal Immunol.1(6),475–488 (2008).
    • 300  Beilharz MW, Sammels LM, Paun A et al.: Timed ablation of regulatory CD4+ T cells can prevent murine AIDS progression. J. Immunol.172(8),4917–4925 (2008).
    • 301  Cecchinato V, Tryniszewska E, Ma ZM et al.: Immune activation driven by CTLA-4 blockade augments viral replication at mucosal sites in simian immunodeficiency virus infection. J. Immunol.180(8),5439–5447 (2008).
    • 302  Truong P, McGavern DB: A novel virus carrier state to evaluate immunotherapeutic regimens: regulatory T cells modulate the pathogenicity of antiviral memory cells. J. Immunol.181(2),1161–1169 (2008).
    • 303  Jiang Q, Zhang L, Wang R et al.: FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2-/-γC-/- mice in vivo. Blood112(7),2858–2868 (2008).
    • 304  Robertson SJ, Messer RJ, Carmody AB, Mittler RS, Burlak C, Hasenkrug KJ: CD137 costimulation of CD8+ T cells confers resistance to suppression by virus-induced regulatory T cells. J. Immunol.180(8),5267–5274 (2008).
    • 305  Kavanagh DG, Kaufmann DE, Sunderji S et al.: Expansion of HIV-specific CD4+ and CD8+ T cells by dendritic cells transfected with mRNA encoding cytoplasm- or lysosome-targeted Nef. Blood107,1963–1969 (2006).
    • 306  Lu W, Arraes LC, Ferreira WT, Andrieu JM: Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat. Med.10(12),1359–1365 (2004).
    • 307  Lu W, Wu X, Lu Y, Guo W, Andrieu JM: Therapeutic dendritic-cell vaccine for simian AIDS. Nat. Med.9,27–32 (2003).
    • 308  Shea A, Sarr Da, Jones N et al.: CCR5 receptor expression is down-regulated in HIV type 2 infection: implication for viral control and protection. AIDS Res. Hum. Retroviruses20(6),630–635 (2005).
    • 309  Connolly NC, Whiteside TL, Wilson C et al.: Therapeutic immunization with HIV-1 peptide-loaded dendritic cells is safe and immunogenic in HIV-1-infected individuals. Clin. Vaccine Immunol.15(2),284–292 (2008).
    • 310  Chea S, Dale CJ, DeRose R, Ramshaw IA, Kent SJ: Ehnanced cellular immunity in macaques following a novel peptide immunotherapy. J. Virol.79(6),3748–3757 (2005).
    • 311  DeRose R, Fernandez CS, Loh L et al.: Delivery of immunotherapy with peptide-pulsed blood in macaques. Virology378(2),201–204 (2008).
    • 312  Mason RD, Alcantara S, Peut V et al.: Inactivated SIV-pulsed autologous fresh blood cells as an immunotherapy strategy. J. Virol.83(3),5301–5310 (2009).
    • 313  van Gulck ERA, Ponsaerts P, Heyndrickx L et al.: Efficient stimulation of HIV-1-specific T cells using dendritic cells electroporated with mRNAencoding autologous HIV-1 Gag and Env proteins. Blood107,1818–1827 (2006).
    • 314  Andrieu JM, Lu W: A dendritic cell-based vaccine for treating HIV infection: background and preliminary results. J. Intern. Med.261(2),123–131(2007).
    • 315  Cohen J: Building an HIV-proof immune system. Science317,612–614 (2007).
    • 316  van Lunzen J, Glaunsinger T, Stahmer I et al.: Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol. Ther.15(5),1024–1033 (2007).