We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Molecular epidemiology of nontuberculous mycobacteria

    Marcel A Behr

    † Author for correspondence

    Division of Infectious Diseases & Medical Microbiology, McGill University, A5.156, Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G 1A4, Canada.

    &
    Joseph O Falkinham III

    Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061–20406, USA

    Published Online:https://doi.org/10.2217/fmb.09.75

    The emergence of nontuberculous mycobacteria (NTM) as important environmental pathogens has stimulated the search for molecular markers to identify NTM sources, determine virulence mechanisms and describe their population structure. The availability of genome sequence data for a number of NTM isolates has permitted a more definitive approach to classification of these organisms based on sequence analysis of polymorphic targets, such as 16S rRNA, hsp65 and the internal transcribed spacer. An alternative approach, based on assessment of conserved inserted and deleted elements, also permits robust branding of clinical and laboratory isolates. Complementary to ‘top-down’ approaches that classify organisms at the species, subspecies and strain level, ‘bottom-up’ methods to determine the genetic similarity of pairs or groups of isolates have also been developed and used. Analysis of large restriction fragments by pulsed-field gel electrophoresis, restriction fragment length polymorphisms of insertion sequences, repetitive genetic elements, arbitrary primed PCR fragments and multilocus sequencing have largely supplanted phenotypic methods for strain comparison, such as serotyping, biotyping and multilocus enzyme electrophoresis. Together, these two sets of tools can provide an enhanced portrait of the NTM and be useful in epidemiologic investigations of the geographic and ecologic provenance of NTM infections. With further study, it is anticipated that the application of these genetic tools to well-defined collections of organisms will not only lead to an improved understanding of the source of NTM infection, but also help identify clinically relevant bacterial subtypes and eventually uncover genetic markers of bacterial virulence.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Falkinham JO III: Nontuberculous mycobacteria in the environment. Clin. Chest Med.23,529–551 (2002).▪ Review of the environmental habitats of the major nontuberculous mycobacteria (NTM)
    • Marras TK, Daley CL: Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin. Chest Med.23,553–567 (2002).▪ A review of the epidemiology, risk factors and rates of NTM disease.
    • Alexander DC, Turenne CY, Behr MA: Insertion and deletion events that define the pathogen Mycobacterium avium subspecies paratuberculosis. J. Bacteriol.190,2479–2487 (2009).
    • Turenne CY, Wallace RJ Jr, Behr MA: Mycobacterium avium in the postgenomic era. Clin. Microbiol. Rev.20,205–229 (2007).
    • Falkinham JO III, Iseman MD, de Haas P, van Soolingen D: Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health6,209–213 (2008).▪▪ Report linking Mycobacterium avium exposure from a showerhead with disease in an individual.
    • Norton CD, LeChevallier MW, Falkinham JO III: Survival of Mycobacterium avium in a model distribution system. Water Res.38,1457–1466 (2004).
    • Brennan PJ, Nikaido H: The envelope of mycobacteria. Annu. Rev. Biochem.64,29–63 (1995).▪ A review of the characteristics of the envelope of NTM.
    • Falkinham JO III, Norton CD, LeChevallier MW: Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol.67,1225–1231 (2001).
    • Wendt SL, George KL, Parker BC, Gruft H, Falkinham JO III: Epidemiology of infection by nontuberculous mycobacteria. III. Isolation of potentially pathogenic mycobacteria from aerosols. Am. Rev. Resp. Dis.122,259–263 (1980).
    • 10  Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA: Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl. Environ. Microbiol.70,2989–3004 (2004).
    • 11  Whittington RJ, Marsh IB, Taylor PJ, Marshall DJ, Taragel C, Reddacliff LA: Isolation of Mycobacterium avium subsp paratuberculosis from environmental samples collected from farms before and after destocking sheep with paratuberculosis. Aust. Vet. J.81,559–563 (2003).
    • 12  De Groote MA, Pace NR, Fulton K, Falkinham JO III: Relationship between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl. Environ. Microbiol.72,7602–7606 (2006).▪▪ Report linking NTM exposure in potting soil with disease in individuals.
    • 13  Falkinham JO III: Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol. Rev.9,177–215 (1996).▪ A review of the environmental habitats and epidemiology of the major NTM.
    • 14  von Reyn CF, Maslow JN, Barber TW, Falkinham JO III, Arbeit RD: Persistent colonisation of potable water as a source of Mycobacterium avium infection in AIDS. Lancet343,1137–1141 (1994).▪▪ Report of M. avium disease in AIDS patients with exposure to M. avium in water.
    • 15  Wolinsky E: Mycobacterial lymphadenitis in children: a prospective study of 105 nontuberculous cases with long-term follow up. Clin. Infect. Dis.20,954–963 (1995).
    • 16  Prince DS, Peterson DD, Steiner RM et al.: Infection with Mycobacterium avium complex in patients with predisposing conditions. N. Engl. J. Med.321,863–868 (1989).
    • 17  Rodman DM, Polis JM, Heltshe SL et al.: Late diagnosis defines a unique population of long-term survivors of cystic fibrosis. Am. J. Respir. Crit. Care Med.171,621–626 (2005).
    • 18  Kim JS, Tanaka N, Newell JD et al.: Nontuberculous mycobacterial infection. CT scan findings, genotype, and treatment responsiveness. Chest128,3863–3869 (2005).
    • 19  Hugot JP, Zaccaria I, Cavanaugh J et al.: Prevalence of CARD15/NOD2 mutations in Caucasian healthy people. Am. J. Gastroenterol.102,1259–1267 (2007).
    • 20  Economou M, Pappas G: New global map of Crohn’s disease: genetic, environmental, and socioeconomic correlations. Inflamm. Bowel Dis.14,709–720 (2008).
    • 21  Small PM, Hopewell PC, Singh SP et al.: The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N. Engl. J. Med.330,1703–1709 (1994).
    • 22  Behr MA, Hopewell PC, Paz EA, Kawamura LM, Schecter GF, Small PM: Predictive value of contact investigation for identifying recent transmission of Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med.158,465–469 (1998).
    • 23  Verver S, Warren RM, Munch Z et al.: Proportion of tuberculosis transmission that takes place in households in a high-incidence area. Lancet363,212–214 (2004).
    • 24  Bodle EE, Cunningham JA, Della-Latta P, Schluger NW, Saiman L: Epidemiology of nontuberculous mycobacteria in patients without HIV infection, New York City. Emerg. Infect. Dis.14,390–396 (2008).
    • 25  Danelishvili L, Wu M, Stang B et al.: Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proc. Natl Acad. Sci. USA104,11038–11043 (2007).
    • 26  Stratmann J, Strommenger B, Goethe R et al.: A 38-kilobase pathogenicity island specific for Mycobacterium avium subsp. paratuberculosis encodes cell surface proteins expressed in the host. Infect. Immun.72,1265–1274 (2004).
    • 27  Yoon JH, Kim E-C, Kim JS, Song EY, Yi J, Shin S: Possession of the macrophage-induced gene by isolates of the Mycobacterium avium complex is not associated with significant clinical disease. J. Med. Microbiol.58,256–260 (2009).
    • 28  Schaefer WB, Davis CL, Cohn ML: Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am. Rev. Respir. Dis.102,499–506 (1970).
    • 29  McCarthy C: Spontaneous and induced mutation in Mycobacterium aviumInfect. Immun.2,223–228 (1970).
    • 30  Kansal RG, Gomez-Foores R, Hehta RT: Change in colony morphology influences the virulence as well as the biochemical properties of the Mycobacterium avium complex. Microb. Pathog.25,203–214 (1998).
    • 31  Maslow JN, Mulligan ME, Arbeit RD: Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin. Infect. Dis.17,153–164 (1993).▪ Review of methods, approaches and results of different typing methods.
    • 32  Turenne CY, Collins DM, Alexander DC, Behr MA: Mycobacterium avium subsp. paratuberculosis and M. avium subsp. avium are independently evolved pathogenic clones of a much broader group of M. avium organisms. J. Bacteriol.190,2479–2487 (2008).▪▪ Report establishing the genetic relatedness of members of the M. avium complex.
    • 33  Bang D, Herlin T, Stegger M et al.: Mycobacterium arosiense sp. nov., a slowly growing, scotochromogenic species causing osteomyelitis in an immunocompromised child. Int. J. Syst. Evol. Microbiol.58,2398–2402 (2008).
    • 34  Murcia MI, Tortoli E, Menendez MC, Palenque E, Garcia MJ: Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. Int. J. Syst. Evol. Microbiol.56,2049–2054 (2006).
    • 35  Tortoli E, Rindi L, Garcia MJ et al.: Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int. J. Syst. Evol. Microbiol.54,1277–1285 (2004).
    • 36  Turenne CY, Semret M, Cousins DV, Collins DM, Behr MA: Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex. J. Clin. Microbiol.44,433–440 (2006).
    • 37  Semret M, Turenne CY, Behr MA: Insertion sequence IS900 revisited. J. Clin. Microbiol.44,1081–1083 (2006).
    • 38  Cousins DV, Whittington R, Marsh I, Masters A, Evans RJ, Kluver P: Mycobacteria distinct from Mycobacterium avium subsp. paratuberculosis isolated from the faeces of ruminants possess IS900-like sequences detectable IS900 polymerase chain reaction: implications for diagnosis. Mol. Cell Probes13,431–442 (1999).
    • 39  Englund S, Bolski G, Johansson KE: An IS900-like sequence found in a Mycobacterium sp. other than Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol. Lett.209,267–271 (2002).
    • 40  Bartos M, Hlozek P, Svastova P et al.: Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards. J. Microbiol. Methods64,333–345 (2006).
    • 41  Semret M, Zhai G, Mostowy S et al.: Extensive genomic polymorphism within Mycobacterium avium. J. Bacteriol.186,6332–6334 (2004).▪▪ Report documenting the extensive genetic polymorphism in the M. avium complex.
    • 42  Semret M, Turenne CY, de Haas P, Collins DM, Behr MA: Differentiating host-associated variants of Mycobacterium avium by PCR for detection of large sequence polymorphisms. J. Clin. Microbiol.44,881–887 (2006).
    • 43  Talbot EA, Williams DL, Frothingham R: PCR identification of Mycobacterium bovis BCG. J. Clin. Microbiol.35,566–569 (1997).
    • 44  Gagneux S, DeRiemer K, Van T et al.: Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103,2869–2873 (2006).
    • 45  Cangelosi GA, Freeman RJ, Lewis KN et al.: Evaluation of a high-throughput repetitive-sequence-based PCR system for DNA fingerprinting of Mycobacterium tuberculosis and Mycobacterium avium complex strains. J. Clin. Microbiol.42,2685–2693 (2004).
    • 46  Tenover FC, Arbeit RD, Goering RV et al.: Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol.33,2233–2239 (1995).
    • 47  von Reyn CF, Jacobs NJ, Arbeit RD, Maslow JN, Niemczyk S: Polyclonal Mycobacterium avium complex infection in patients with AIDS: variation in antimicrobial susceptibilities of different strains of M. avium isolated from the same patient. J. Clin. Microbiol.33,1008–1100 (1995).
    • 48  Yakrus MA, Good RC: Geographic distribution, frequency, and specimen source of Mycobacterium avium complex serotypes isolates from patients with acquired immunodeficiency syndrome. J. Clin. Microbiol.28,926–929 (1990).
    • 49  Fry KL, Meissner PS, Falkinham JO III: Epidemiology of infection by nontuberculous mycobacteria. VI. Identification and use of epidemiologic markers for studies of Mycobacterium avium, M. intracellulare, and M. scrofulaceum. Am. Rev. Respir. Dis.132,39–43 (1986).
    • 50  Wasem CF, McCarthy CM, Murray LW: Multilocus enzyme electrophoresis analysis of the Mycobacterium avium complex and other mycobacteria. J. Clin. Microbiol.29,264–271 (1991).
    • 51  Mazurek GH, Harman S, Zhang Y et al.: Large DNA restriction fragment polymorphism in the Mycobacterium avium–M. intracellulare complex: a potential epidemiologic tool. J. Clin. Microbiol.31,390–394 (1993).
    • 52  Pestel-Caron M, Arbeit RD: Characterization of IS1245 for strain typing of Mycobacterium avium. J. Clin. Microbiol.36,1859–1863 (1998).
    • 53  Bauer J, Andersen AB: Stability of insertion sequence IS1245, a marker for differentiation of Mycobacterium avium strains. J. Clin. Microbiol.37,442–444 (1999).
    • 54  Slutsky AM, Arbeit RD, Barber TW et al.: Polyclonal infections due to Mycobacterium avium complex in patients with AIDS detected by pulsed-field gel electrophoresis of sequential clinical isolates. J. Clin. Microbiol.32,1773–1778 (1994).▪▪ Report documenting polyclonal NTM infections in AIDS patients.
    • 55  Jucker MT, Falkinham JO III: Epidemiology of infection by nontuberculous mycobacteria. IX. Evidence for two DNA homology groups among small plasmids in Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. Am. Rev. Respir. Dis.142,858–862 (1990).
    • 56  Picardeau M, Vincent V: Typing of Mycobacterium avium isolates by PCR. J. Clin. Microbiol.34,389–392 (1996).
    • 57  Hunter PR, Gaston MA: Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J. Clin. Microbiol.26,2465–2466 (1988).
    • 58  Bercovier H, Kafri O, Sela S: Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem. Biophys. Res. Commun.136,1136–1141 (1986).
    • 59  Feizabadi MM, Robertson ID, Cousins DV et al.: Genetic characterization of Mycobacterium avium isolates recovered from humans and animals in Australia. Epidemiol. Infect.116,41–49 (1996).
    • 60  Legrand E, Sola C, Verdol B. Rastogi N: Genetic diversity of Mycobacterium avium recovered from AIDS patients in the Caribbean as studied by a consensus IS1245-RFLP method and pulsed-field gel electrophoresis. Res. Microbiol.151,271–283 (2000).
    • 61  Picardeau M, Prod’Hom G, Raskine L, LePennec MP, Vincent V: Genotypic characterization of five subspecies of Mycobacterium kansasii. J. Clin. Microbiol.35,25–32 (1997).
    • 62  Alcaide F, Richter I, Bernasconi C et al.: Heterogeneity and clonality among isolates of Mycobacterium kansasii: implications for epidemiological and pathogenicity studies. J. Clin. Microbiol.35,1959–1964 (1997).
    • 63  Collins DM, Gabric DM, de Lisle GW: Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization. J. Clin. Microbiol.28,1591–1596 (1990).
    • 64  Pavlik I, Bejckova L, Pavlas M, Rozsypalova Z, Koskova S: Characterization by restriction endonuclease analysis and DNA hybridization using IS900 of bovine, ovine, caprine and human dependent strains of Mycobacterium paratuberculosis isolated in various localities. Vet. Microbiol.45,311–318 (1995).
    • 65  Amonsin A, Li LL, Zhang Q et al.: Multilocus short sequence repeat sequencing approach for differentiating among Mycobacterium avium subsp. paratuberculosis strains. J. Clin. Microbiol.42,1694–1702 (2004).
    • 66  Sevilla I, Li L, Amonsin A et al.: Comparative analysis of Mycobacterium avium subsp. paratuberculosis isolates from cattle, sheep and goats by short sequence repeat and pulsed-field gel electrophoresis typing. BMC Microbiol.8,204 (2008).
    • 67  Motiwala AS, Strother M, Amonsin A et al.: Molecular epidemiology of Mycobacterium avium subsp. paratuberculosis: evidence for limited strain diversity, strain sharing, and identification of unique targets for diagnosis. J. Clin. Microbiol.41,2015–2026 (2003).
    • 68  Picardeau M, Varnerot A, Rauzier J, Gicquel B, Vincent V: Mycobacterium xenopi IS1395, a novel insertion sequence expanding the IS256 family. Microbiology142,2453–2461 (1996).
    • 69  Kauppinen J, Pelkonen J, Katila M-J: RFLP analysis of Mycobacterium malmoense strains using ribosomal RNA gene probes: an additional tool to examine intraspecies variation. J. Microbiol. Meth.19,261–267 (1994).
    • 70  Kauppinen J, Mantyjarvi R, Katila M-J: Random amplified polymorphic DBA genotyping of Mycobacterium malmoense. J. Clin. Microbiol.32,1827–1829 (1994).
    • 71  Yakrus MA, Straus WL: DNA polymorphisms detected in Mycobacterium haemophilum by pulsed-field gel electrophoresis. J. Clin. Microbiol.32,1083–1084 (1994).
    • 72  Kikuchi K, Bernard EM, Kiehn TE, Armstrong D, Riley LW: Restriction fragment length polymorphism analysis of clinical isolates of Mycobacterium haemophilum. J. Clin. Microbiol.32,1763–1767 (1994).
    • 73  Jackson K, Edwards R, Leslie DE, Hayman J: Molecular typing for Mycobacterium ulcerans. J. Clin. Microbiol.33,2250–2253 (1995).
    • 74  Burns DN, Wallace RJ Jr, Schultz ME et al.: Nosocomial outbreak of respiratory tract colonization with Mycobacterium fortuitum: demonstration of the usefulness of pulsed-field gel electrophoresis in an epidemiologic investigation. Am. Rev. Respir. Dis.144,1153–1159 (1991).
    • 75  Wallace RJ Jr, Zhang Y, Brown BA, Fraser V, Mazurek GH, Maloney S: DNA large restriction fragment patterns of sporadic and epidemic nosocomial strains of Mycobacterium chelonae and Mycobacterium abscessus. J. Clin. Microbiol.31,2697–2701 (1993).
    • 76  Zhang Y, Rajagopalan M, Brown BA, Wallace RJ Jr: Randomly amplified polymorphic DNA PCR for comparison of Mycobacterium abscessus strains from nosocomial outbreaks. J. Clin. Microbiol.35,3132–3239 (1997).
    • 77  Horsburgh CR Jr, Cohn DL, Roberts RB et al.: Mycobacterium avium–M. intracellulare isolates from patients with or without acquired immunodeficiency syndrome. Antimicrob. Agents Chemother.30,955–957 (1986).
    • 78  Hoffner SE, Kallenius G, Petrini B, Brennan PJ, Tsang AY: Serovars of Mycobacterium avium complex isolated from patients in Sweden. J. Clin. Microbiol.28,1105–1107 (1990).
    • 79  Pfaller SL, Aronson TW, Holtzman AE, Covert TC: Amplified fragment length polymorphism analysis of Mycobacterium avium complex isolates recovered from southern California. J. Med. Microbiol.56,1152–1160 (2007).
    • 80  Burki DR, Bernasconi C, Bodmer T, Telenti A: Evaluation of the relatedness of strains of Mycobacterium avium using pulsed-field gel electrophoresis. Eur. J. Clin. Microbiol. Infect. Dis.14,212–217 (1995).
    • 81  Picardeau M, Varnerot A, Lecompte T, Brel F, May T, Vincent V: Use of different molecular typing techniques for bacteriological follow-up in a clinical trial with AIDs patients with Mycobacterium avium bacteremia. J. Clin. Microbiol.35,2503–2510 (1997).