We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Zein nanoparticles containing ceftazidime and tobramycin: antibacterial activity against Gram-negative bacteria

    Luís AA Campos

    Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil

    Clinical Microbiology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil

    ,
    Azael FS Neto

    Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil

    ,
    Maria CS Noronha

    Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil

    ,
    João VO Santos

    Clinical Microbiology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil

    ,
    Marton KA Cavalcante

    Oswaldo Cruz Pernambuco Foundation, Fiocruz/PE, Immunogenetics Laboratory, Recife, CEP 50740-465, Pernambuco, Brazil

    ,
    Maria CAB Castro

    Oswaldo Cruz Pernambuco Foundation, Fiocruz/PE, Immunogenetics Laboratory, Recife, CEP 50740-465, Pernambuco, Brazil

    Parasitology Laboratory, Federal University of Pernambuco/Academic Center of Vitória, Vitória de Santo Antão, CEP 55608- 680, Pernambuco, Brazil

    ,
    Valéria RA Pereira

    Oswaldo Cruz Pernambuco Foundation, Fiocruz/PE, Immunogenetics Laboratory, Recife, CEP 50740-465, Pernambuco, Brazil

    ,
    Isabella MF Cavalcanti

    *Author for correspondence: Tel.: +55 812 126 8570;

    E-mail Address: isabella.cavalcanti@ufpe.br

    Clinical Microbiology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil

    Laboratory of Microbiology & Immunology, Federal University of Pernambuco/Academic Center of Vitória, Vitória de Santo Antão, CEP 55608- 680, Pernambuco, Brazil

    &
    Nereide S Santos-Magalhães

    Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil

    Published Online:https://doi.org/10.2217/fmb-2023-0147

    Aims: This work describes the encapsulation of ceftazidime and tobramycin in zein nanoparticles (ZNPs) and the characterization of their antibacterial and antibiofilm activities against Gram-negative bacteria. Materials & methods: ZNPs were synthesized by nanoprecipitation. Cytotoxicity was assessed by MTT assay and antibacterial and antibiofilm assays were performed by broth microdilution and violet crystal techniques. Results: ZNPs containing ceftazidime (CAZ-ZNPs) and tobramycin (TOB-ZNPs) showed drug encapsulation and thermal stability. Encapsulation of the drugs reduced their cytotoxicity 9–25-fold. Antibacterial activity, inhibition and eradication of biofilm by CAZ-ZNPs and TOB-ZNPs were observed. There was potentiation when CAZ-ZNPs and TOB-ZNPs were combined. Conclusion: CAZ-ZNPs and TOB-ZNPs present ideal physical characteristics for in vivo studies of antibacterial and antibiofilm activities.

    Plain language summary

    A nanotechnology product was developed to treat diseases caused by bacteria. This prototype showed the ideal characteristics and could be administered by ingestion through the mouth, aspiration through the nose or injection into the veins. The prototype did not harm or kill human cells. It killed the bacteria and prevented the formation of a type of protection against antibiotics that bacteria can produce, called a biofilm. Nanotechnology products are a promising alternative for the treatment of bacterial infections.

    Tweetable abstract

    Zein nanoparticles containing ceftazidime and tobramycin reduce cytotoxicity and improve antibacterial and antibiofilm activity. They are a promising alternative for the treatment of bacterial infections caused by biofilm-producing Gram-negative bacteria.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of infections due to MDR Gram-negative bacteria. Front. Med. 6(74), 1–12 (2019).
    • 2. Kofteridis DP, Andrianaki AM, Maraki S et al. Treatment pattern, prognostic factors, and outcome in patients with infection due to pan-drug-resistant Gram-negative bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 39(5), 965–970 (2020).
    • 3. Coppola N, Maraolo AE, Onorato L et al. Epidemiology, mechanisms of resistance and treatment algorithm for infections due to carbapenem-resistant Gram-negative bacteria: an expert panel opinion. Antibiotics 11(9), 1263 (2022).
    • 4. Chung PY. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. FEMS Microbiol. Lett. 363(20), 219 (2016).
    • 5. Ruhal R, Kataria R. Biofilm patterns in Gram-positive and Gram-negative bacteria. Microbiol. Res. 251, 126829 (2021).
    • 6. Syaiful I, Widodo ADW, Endraswari PD, Alimsardjono L, Utomo B, Arfijanto MV. The association between biofilm formation ability and antibiotic resistance phenotype in clinical isolates of Gram-negative bacteria: a cross-sectional study. Bali Med. J. 12(1), 1014–1020 (2023).
    • 7. Jones TE, Selby PR, Mellor CS, Cheam DB. Ceftazidime stability and pyridine toxicity during continuous iv infusion. Am. J. Health Syst. Pharm. 76(4), 200–205 (2019). • The need to use nanotechnology to improve therapeutic approaches using antimicrobials.
    • 8. Da Silva Medeiros T, Pinto EC, Cabral LM, de Sousa VP. Tobramycin: a review of detectors used in analytical approaches for drug substance, its impurities and in pharmaceutical formulation. Microchem. J. 160, 105658 (2021).
    • 9. Zasowski EJ, Rybak JM, Rybak MJ. The β-lactams strike back: ceftazidime-avibactam. Pharm. J. Human Pharm. Drug Ther. 35(8), 755–770 (2015).
    • 10. Schwarz C, Taccetti G, Burgel PR, Mulrennan S. Tobramycin safety and efficacy review article. Respir. Med. 195, 106778 (2022).
    • 11. Michelon H, Tardivel M, Dinh A et al. Efficacy and safety of subcutaneous administration of ceftazidime as a salvage therapy in geriatrics: a case report. Fundam. Clin. Pharmacol. 34(4), 521–524 (2020).
    • 12. Irache JM, González-Navarro CJ. Zein nanoparticles as vehicles for oral delivery purposes. Nanomedicine 12(11), 1209–1211 (2017).
    • 13. Pascoli M, de Lima R, Fraceto LF. Zein nanoparticles and strategies to improve colloidal stability: a mini-review. Front. Chem. 6, 1–6 (2018).
    • 14. Campos LAA, Neto AFS, Noronha MCS, de Lima MF, Cavalcanti IMF, Santos-Magalhães NS. Zein nanoparticles for drug delivery: preparation methods and biological applications. Int. J. Pharm. 635, 122754 (2023).
    • 15. Campos L, de Souza Tavares W, Pena GR, Martin-Pastor M, de Sousa FFO. Design and characterization of ellagic acid-loaded zein nanoparticles and their effect on the antioxidant and antibacterial activities. J. Mol. Liq. 341, 116915 (2021).
    • 16. de Araujo JTC, Martin-Pastor M, Pérez L, Pinazo A, de Sousa FFO. Development of anacardic acid-loaded zein nanoparticles: physical chemical characterization, stability, and antimicrobial improvement. J. Mol. Liq. 332, 115808 (2021).
    • 17. Moreno LCGEI, Puerta E, Suárez-Santiago JE, Santos-Magalhães NS, Ramirez MJ, Irache JM. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer's disease. Int. J. Pharm. 517(1–2), 50–57 (2017).
    • 18. Cavalcanti IDL, Ximenes RM, Loiola Pessoa OD, Santos Magalhães NS, Lira-Nogueira MC de B. Fucoidan-coated PIBCA nanoparticles containing oncocalyxone A: activity against metastatic breast cancer cells. J. Drug Deliv. Sci. Technol. 65, 102698 (2021).
    • 19. Moreno-Sastre M, Pastor M, Esquisabel A et al. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int. J. Pharm. 498(1–2), 263–273 (2016). •• Tobramycin is a main antibiotic in the treatment of bacteria that cause nosocomial infections and methodologies for improving this drug are important targets for combating antimicrobial resistance.
    • 20. Da Rosa CG, De Oliveira Brisola Maciel MV, De Carvalho SM et al. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids Surf. A Physicochem. Eng. Asp. 481, 337–344 (2015).
    • 21. Hu C, Wang L-L, Lin Y-Q et al. Nanoparticles for the treatment of oral biofilms: current state, mechanisms, influencing factors, and prospects. Adv. Healthc. Mater. 8(24), e1901301 (2019).
    • 22. Liang J, Yan H, Wang X et al. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem. 231, 19–24 (2017).
    • 23. Park CE, Park DJ, Kim BK. Effects of a chitosan coating on properties of retinol-encapsulated zein nanoparticles. Food Sci. Biotechnol. 24(5), 1725–1733 (2015).
    • 24. Performance standards for antimicrobial susceptibility testing. CLSI (33rd Edition). Lewis JS II (Ed.). Clinical and Laboratory Standards Institute, PA, USA (2023).
    • 25. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of Staphylococcal biofilm formation. J. Microbiol. Methods 40(2), 175–179 (2000).
    • 26. Albano M, Crulhas BP, Alves FCB et al. Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microb. Pathog. 126, 231–238 (2019).
    • 27. Bassetti M, Garau J. Current and future perspectives in the treatment of multidrug-resistant Gram-negative infections. J. Antimicrob. Chemother. 76(Suppl. 4), 23–37 (2021).
    • 28. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25(6), 1340 (2020).
    • 29. Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18(3), 318–327 (2018).
    • 30. Scudeller L, Righi E, Chiamenti M et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int. J. Antimicrob. Agents 57(5), 106344 (2021).
    • 31. Giteru SG, Ali MA, Oey I. Recent progress in understanding fundamental interactions and applications of zein. Food Hydrocoll. 120, 106948 (2021).
    • 32. Tortorella S, Maturi M, Buratti VV et al. Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Adv. 11(62), 39004–39026 (2021).
    • 33. Danaei M, Dehghankhold M, Ataei S et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2), 57 (2018).
    • 34. Mistry A, Glud SZ, Kjems J et al. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J. Drug Target 17(7), 543–552 (2009).
    • 35. Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 72(2), 310–322 (2015).
    • 36. Fröhlich E, Roblegg E. Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Arch. Toxicol. 90(10), 2297–2314 (2016). • Benefits of using nanotechnology in the use of new antimicrobial approaches.
    • 37. Zhang Y, Niu Y, Luo Y et al. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem. 142, 269–275 (2014).
    • 38. Yan X, Li M, Xu X, Liu X, Liu F. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: a review. Front. Nutr. 9, 999373 (2022).
    • 39. Wijesooriya C, Budai M, Budai L, Szilasi ME, Petrikovics I. Optimization of liposomal encapsulation for ceftazidime for developing a potential eye drop formulation. J. Basic Clin. Pharm. 4(3), 73–75 (2013).
    • 40. Farzampanah L, Chitsaz M, Tabandeh H, Hajihosseini R, Mansouri S. Preparation and investigation of in vitro effect of liposomal ceftazidime on the resistant Pseudomonas aeruginosa. Adv. Biol. Res. 9(3), 105–111 (2017). •• Liposomal formulations of ceftazidime have great potential for the treatment of infections caused by P. aeruginosa, requiring application in in vivo studies.
    • 41. Silva MM, Calado R, Marto J, Bettencourt A, Almeida AJ, Gonçalves LMD. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar. Drugs 15(12), 354–370 (2017).
    • 42. Al-Nemrawi NK, Alshraiedeh NH, Zayed AL, Altaani BM. Low molecular weight chitosan-coated PLGA nanoparticles for pulmonary delivery of tobramycin for cystic fibrosis. Pharmaceuticals 11(1), 14–28 (2018).
    • 43. Hedayati Ch M, Abolhassani Targhi A, Shamsi F et al. Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J. Biomed. Mater. Res. A 109(6), 966–980 (2021).
    • 44. Zhang H, van Os WL, Tian X et al. Development of curcumin-loaded zein nanoparticles for transport across the blood–brain barrier and inhibition of glioblastoma cell growth. Biomater. Sci. 9(21), 7092–7103 (2021).
    • 45. Reboredo C, González-Navarro CJ, Martínez-Oharriz C, Martínez-López AL, Irache JM. Preparation and evaluation of PEG-coated zein nanoparticles for oral drug delivery purposes. Int. J. Pharm. 597, 120287 (2021).
    • 46. Leena MM, Anukiruthika T, Moses JA, Anandharamakrishnan C. Co-delivery of curcumin and resveratrol through electrosprayed core-shell nanoparticles in 3D printed hydrogel. Food Hydrocoll. 124, 107200 (2022).
    • 47. Rozenberg M, Shoham G. FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys. Chem. 125(1), 166–171 (2007).
    • 48. Thakare Y, Dharaskar S, Palkar R. FTIR spectroscopy and microscopy in biomedical nanotechnology. In: Analytical Techniques for Biomedical Nanotechnology. Kaushik ASrinivasan SSMishra YK (Ed.). IOP Publishing, Bristol, UK, 4–19 (2023).
    • 49. Bianchera A, Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug–polymer and interpolymer interactions. Expert Opin. Drug Deliv. 17(10), 1345–1359 (2020).
    • 50. Osório LR, Meneguin AB, da Silva HB, Barreto HM, Osajima JA, da Silva Filho EC. Evaluation of physico-chemical properties and antimicrobial synergic effect of ceftazidime-modified chitosan. J. Therm. Anal. Calorim. 134(3), 1629–1636 (2018). •• The use of combined therapy presents an important benefit for combating antimicrobial resistance.
    • 51. Ge X, Sun Y, Kong J et al. The thermal resistance and targeting release of zein-sodium alginate binary complexes as a vehicle for the oral delivery of riboflavin. J. Food Sci. Technol. 60(1), 92–102 (2023).
    • 52. Rosasco MA, Bonafede SL, Faudone SN, Segall AI. Compatibility study of tobramycin and pharmaceutical excipients using differential scanning calorimetry, FTIR, DRX, and HPLC. J. Therm. Anal. Calorim. 134(3), 1929–1941 (2018).
    • 53. Pereira LA, da Silva Reis L, Batista FA, Mendes JÁ, Osajima JÁ, Silva-Filho EC. Biological properties of chitosan derivatives associated with the ceftazidime drug. Carbohydr. Polym. 222, 115002 (2019).
    • 54. Turasan H, Kokini JL. Advances in understanding the molecular structures and functionalities of biodegradable zein-based materials using spectroscopic techniques: a review. Biomacromolecules 18(2), 331–354 (2017).
    • 55. Girija Aswathy R, Sivakumar B, Brahatheeswaran D et al. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Adv. Nat. Sci. Nanosci. Nanotechnol. 3(2), 025006 (2012).
    • 56. Jacinto TA, Oliveira B, Miguel SP, Ribeiro MP, Coutinho P. Ciprofloxacin-loaded zein/hyaluronic acid nanoparticles for ocular mucosa delivery. Pharmaceutics 14(8), 1557 (2022).
    • 57. Selvakannan PR, Mandal S, Phadtare S, Pasricha R, Sastry M. Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19(8), 3545–3549 (2003).
    • 58. Masoud MS, Ali AE, Elasala GS, Kolkaila SA. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals. Spectrochim. Acta A Mol. Biomol. 193, 458–466 (2018).
    • 59. da Rosa CG, Sganzerla WG, de Oliveira Brisola Maciel MV et al. Development of poly (ethylene oxide) bioactive nanocomposite films functionalized with zein nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 586, 124268 (2020).
    • 60. Piel G, Pirotte B, Delneuville I et al. Study of the influence of both cyclodextrins and L-lysine on the aqueous solubility of nimesulide; isolation and characterization of nimesulide-L-lysine-cyclodextrin complexes. J. Pharm. Sci. 86(4), 475–480 (1997).
    • 61. Chang S-C, Lee M-J, Lin H. Preparation of nano- and micrometric ceftazidime particles with supercritical anti-solvent technique. J. Phys. Chem. C 112(38), 14835–14842 (2008).
    • 62. Lopes CM, Lobo JMS, Costa P. Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Rev. Bras. Cienc. Farm. 41, 143–154 (2005).
    • 63. Shinde P, Agraval H, Srivastav AK, Yadav UCS, Kumar U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int. J. Pharm. 588, 119795 (2020).
    • 64. Cui B, Li J, Lai Z et al. Emamectin benzoate-loaded zein nanoparticles produced by antisolvent precipitation method. Polym. Test. 94, 107020 (2021).
    • 65. Zhang F, Khan MA, Cheng H, Liang L. Co-encapsulation of α-tocopherol and resveratrol within zein nanoparticles: impact on antioxidant activity and stability. J. Food Eng. 247, 9–18 (2019).
    • 66. De Melo APZ, Da Rosa CG, Sganzerla WG et al. Synthesis and characterization of zein nanoparticles loaded with essential oil of Ocimum gratissimum and Pimenta racemosa. Mater. Res. Express. 6(9), 095084 (2019).
    • 67. Gonçalves da Rosa C, Zapelini de Melo AP, Sganzerla WG et al. Application in situ of zein nanocapsules loaded with Origanum vulgare Linneus and Thymus vulgaris as a preservative in bread. Food Hydrocoll. 99, 105339 (2020).
    • 68. Yuan Y, Li H, Liu C et al. Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method. Int. J. Biol. Macromol. 139, 30–39 (2019).
    • 69. Li H, Yuan Y, Zhu J, Wang T, Wang D, Xu Y. Zein/soluble soybean polysaccharide composite nanoparticles for encapsulation and oral delivery of lutein. Food Hydrocoll. 103, 105715 (2020).
    • 70. Nunes R, Baião A, Monteiro D, das Neves J, Sarmento B. Zein nanoparticles as low-cost, safe, and effective carriers to improve the oral bioavailability of resveratrol. Drug Deliv. Transl. Res. 10(3), 826–837 (2020).
    • 71. Sans-Serramitjana E, Jorba M, Fusté E, Pedraz JL, Vinuesa T, Viñas M. Free and nanoencapsulated tobramycin: effects on planktonic and biofilm forms of Pseudomonas. Microorganisms 5(3), 35 (2017).
    • 72. Hill M, Cunningham RN, Hathout RM, Johnston C, Hardy JG, Migaud ME. Formulation of antimicrobial tobramycin loaded PLGA nanoparticles via complexation with AOT. J. Funct. Biomater. 10(2), 26 (2019).
    • 73. Gómez-Núñez MF, Castillo-López M, Sevilla-Castillo F et al. Nanoparticle-based devices in the control of antibiotic resistant bacteria. Front. Microbiol. 11, 563821 (2020).
    • 74. Lin YK, Yang SC, Hsu CY, Sung JT, Fang JY. The antibiofilm nanosystems for improved infection inhibition of microbes in skin. Molecules 26(21), 6392 (2021).
    • 75. Ratjen F, Brockhaus F, Angyalosi G. Aminoglycoside therapy against Pseudomonas aeruginosa in cystic fibrosis: a review. J. Cyst. Fibros. 8(6), 361–369 (2009).
    • 76. de Souza Tavares W, Pena GR, Martin-Pastor M, de Sousa FFO. Design and characterization of ellagic acid-loaded zein nanoparticles and their effect on the antioxidant and antibacterial activities. J. Mol. Liq. 341, 116915 (2021).
    • 77. Gong S, Wang D, Tao S et al. Facile encapsulation of thymol within deamidated zein nanoparticles for enhanced stability and antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 626, 126940 (2021).
    • 78. Dos Santos Ramos MA, Da Silva PB, Spósito L et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int. J. Nanomedicine 13, 1179–1213 (2018).
    • 79. Feng W, Zhang L, Yuan Q et al. Effect of sub-minimal inhibitory concentration ceftazidime on the pathogenicity of uropathogenic Escherichia coli. Microb. Pathog. 151, 104748 (2021).
    • 80. Alzahrani NM, Booq RY, Aldossary AM et al. Liposome-encapsulated tobramycin and IDR-1018 peptide mediated biofilm disruption and enhanced antimicrobial activity against Pseudomonas aeruginosa. Pharmaceutics 14(5), 960 (2022).
    • 81. Kamali E, Jamali A, Izanloo A, Ardebili A. In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiol. 21, 1–10 (2021).
    • 82. Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat. Rev. Microbiol. 21(1), 1–18 (2023).
    • 83. Vuotto C, Longo F, Pascolini C et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J. Appl. Microbiol. 123(4), 1003–1018 (2017).
    • 84. Shebl RI, Elkhatib WF, Badawy MSE. Modulating the transcriptomic profile of multidrug-resistant Klebsiella pneumoniae biofilm formation by antibiotics in combination with zinc sulfate. Ann. Clin. Microbiol. Antimicrob. 22(1), 1–12 (2023).
    • 85. Li Y, Wang B, Lu F et al. Synergistic inhibitory effect of polymyxin B in combination with ceftazidime against robust biofilm formed by Acinetobacter baumannii with genetic deficiency in AbaI/AbaR quorum sensing. Microbiol. Spectr. 10(1), e01768–21 (2022).
    • 86. Guerrieri CG, Gonçalves MT, da Silva AF, Dos Santos ALS, Dos Santos KV, Spano LC. Remarkable antibiofilm activity of ciprofloxacin, cefoxitin, and tobramycin, by themselves or in combination, against enteroaggregative Escherichia coli in vitro. Diagn. Microbiol. Infect. Dis. 107(3), 116048 (2023).
    • 87. Sun F, Yuan Q, Wang Y et al. Sub-minimum inhibitory concentration ceftazidime inhibits Escherichia coli biofilm formation by influencing the levels of the ibpA gene and extracellular indole. J. Chemother. 32(1), 7–14 (2020).
    • 88. Eladawy M, El-Mowafy M, El-Sokkary MMA, Barwa R. Effects of lysozyme, proteinase K, and cephalosporins on biofilm formation by clinical isolates of Pseudomonas aeruginosa. Interdiscip. Perspect. Infect. Dis. 2020, 1–13 (2020).
    • 89. Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle-biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27(11), 915–926 (2019).
    • 90. Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review. Front Chem. 7(824), 1–17 (2019).
    • 91. Lima RA, de Souza SLX, Lima LA et al. Antimicrobial effect of anacardic acid–loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz. J. Microbiol. 51(4), 1623–1630 (2020).
    • 92. Liu Y, Shi L, Su L et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 48(2), 428–446 (2019). •• Use of nanotechnology as a framework to enhance the antimicrobial activity of antimicrobial molecules by enhancing antibiofilm activity.
    • 93. Malaekeh-Nikouei B, Fazly Bazzaz BS, Mirhadi E, Tajani AS, Khameneh B. The role of nanotechnology in combating biofilm-based antibiotic resistance. J. Drug Deliv. Sci. Technol. 60, 101880 (2020).
    • 94. Hughes G, Webber MA. Novel approaches to the treatment of bacterial biofilm infections. Br. J. Pharmacol. 174(14), 2237–2246 (2017).