We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Fungicide Xylaria sp. BCC 1067 extract induces reactive oxygen species and activates multidrug resistance system in Saccharomyces cerevisiae

    Pichayada Somboon

    Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

    ,
    Attaporn Poonsawad

    Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

    ,
    Songsak Wattanachaisaereekul

    Pilot Plant & Development Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand

    ,
    Laran T Jensen

    Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand

    ,
    Masakazu Niimi

    Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

    ,
    Supapon Cheevadhanarak

    Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

    Pilot Plant & Development Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand

    &
    Nitnipa Soontorngun

    *Author for correspondence:

    E-mail Address: nitnipa.soo@kmutt.ac.th

    Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

    Published Online:https://doi.org/10.2217/fmb-2016-0151

    Aim: To investigate antifungal potential of Xylaria sp. BIOTEC culture collection (BCC) 1067 extract against the model yeast Saccharomyces cerevisiae. Materials & methods: Antifungal property of extract, reactive oxygen species levels and cell survival were determined, using selected deletion strains. Results: Extract showed promising antifungal effect with minimal inhibitory concentration100 and minimal fungicidal concentration of 500 and 1000 mg/l, respectively. Strong synergy was observed with fractional inhibitory concentration index value of 0.185 for the combination of 60.0 and 0.5 mg/l of extract and ketoconazole, respectively. Extract-induced intracellular reactive oxygen species levels in some oxidant-prone strains and mediated plasma membrane rupture. Antioxidant regulator Yap1, efflux transporter Pdr5 and ascorbate were pivotal to protect S. cerevisiae from extract cytotoxicity. Conclusion:Xylaria sp. BCC 1067 extract is a potentially valuable source of novel antifungals.

    Papers of special interest have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Teodoro GR, Brighenti FL, Delbem AC et al. Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans. Future Microbiol. 10(6), 917–927 (2015).
    • 2 Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20(1), 133–163 (2007).
    • 3 Zavrel M, White TC. Medically important fungi respond to azole drugs: an update. Future Microbiol. 10(8), 1355–1373 (2015).
    • 4 Odds FC, Brown AJP, Gow NaR. Antifungal agents: mechanisms of action. Trends Microbiol. 11(6), 272–279 (2003).
    • 5 Mesa-Arango AC, Scorzoni L, Zaragoza O. It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 3, 286 (2012).
    • 6 Ferreira GF, Baltazar Lde M, Santos JR et al. The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii. J. Antimicrob. Chemother. 68(8), 1801–1811 (2013).
    • 7 Dockrell DH. Salvage therapy for invasive aspergillosis. J. Antimicrob. Chemother. 61(h 1), i41–i44 (2008).
    • 8 Laniado-Laborin R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev. Iberoam. Micol. 26(4), 223–227 (2009).
    • 9 Sanguinetti M, Posteraro B, Lass-Florl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58(h 2), 2–13 (2015).
    • 10 Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD. Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob. Agents Chemother. 54(5), 1655–1664 (2010).
    • 11 Liu TT, Lee RE, Barker KS et al. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob. Agents Chemother. 49(6), 2226–2236 (2005).
    • 12 Agarwal AK, Rogers PD, Baerson SR et al. Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J. Biol. Chem. 278(37), 34998–35015 (2003).
    • 13 Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol. Cell 36(5), 845–860 (2009).
    • 14 Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta 1780(11), 1217–1235 (2008).
    • 15 Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439–461 (2000).
    • 16 Morano KA, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4), 1157–1195 (2012).
    • 17 Gulshan K, Rovinsky SA, Coleman ST, Moye-Rowley WS. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem. 280(49), 40524–40533 (2005).
    • 18 Toone WM, Morgan BA, Jones N. Redox control of AP-1-like factors in yeast and beyond. Oncogene 20(19), 2336–2346 (2001).
    • 19 Rodrigues-Pousada C, Menezes RA, Pimentel C. The Yap family and its role in stress response. Yeast 27(5), 245–258 (2010).
    • 20 Thepnok P, Ratanakhanokchai K, Soontorngun N. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 450(4), 1276–1282 (2014).
    • 21 Tangsombatvichit P, Semkiv MV, Sibirny AA, Jensen LT, Ratanakhanokchai K, Soontorngun N. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Res. 15(2), pii: fou002 (2015).
    • 22 Jansuriyakul S, Somboon P, Rodboon N, Kurylenko O, Sibirny A, Soontorngun N. The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 100(10), 4549–4560 (2016).
    • 23 Schüller C, Mamnun YM, Wolfger H, Rockwell N, Thorner J, Kuchler K. Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae. Mol. Biol. Cell 18(12), 4932–4944 (2007).
    • 24 Macpherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol. Biol. Rev. 70(3), 583–604 (2006).
    • 25 Katzmann DJ, Burnett PE, Golin J, Mahe Y, Moye-Rowley WS. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol. Cell. Biol. 14(7), 4653–4661 (1994).
    • 26 Akache B, Turcotte B. New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J. Biol. Chem. 277(24), 21254–21260 (2002).
    • 27 Larochelle M, Drouin S, Robert F, Turcotte B. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol. Cell. Biol. 26(17), 6690–6701 (2006).
    • 28 Fardeau V, Lelandais G, Oldfield A et al. The central role of PDR1 in the foundation of yeast drug resistance. J. Biol. Chem. 282(7), 5063–5074 (2007).
    • 29 Leppert G, Mcdevitt R, Falco SC, Van Dyk TK, Ficke MB, Golin J. Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces. Genetics 125(1), 13–20 (1990).
    • 30 Golin J, Ambudkar SV. The multidrug transporter Pdr5 on the 25th anniversary of its discovery: an important model for the study of asymmetric ABC transporters. Biochem. J. 467(3), 353–363 (2015).
    • 31 Lamping E, Monk BC, Niimi K et al. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot. Cell. 6(7), 1150–1165 (2007).
    • 32 Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull. World Health Org. 79(8), 780–790 (2001).
    • 33 Isaka M, Jaturapat A, Kladwang W et al. Antiplasmodial compounds from the wood-decayed fungus Xylaria sp. BCC 1067. Planta. Med. 66(5), 473–475 (2000).
    • 34 Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol. 78(2), 241–247 (2008). • Identifies new antifungals from microorganism.
    • 35 Phonghanpot S, Punya J, Tachaleat A et al. Biosynthesis of Xyrrolin, a new cytotoxic hybrid polyketide/non-ribosomal peptide pyrroline with anticancer potential, in Xylaria sp. BCC 1067. Chembiochem 13(6), 895–903 (2012).
    • 36 Wang XN, Tan RX, Liu JK. Xylactam, a new nitrogen-containing compound from the fruiting bodies of ascomycete Xylaria euglossa. J. Antibiot. (Tokyo) 58(4), 268–270 (2005).
    • 37 Jang YW, Lee IK, Kim YS et al. Xylarinic acids A and B, new antifungal polypropionates from the fruiting body of Xylaria polymorpha. J. Antibiot. (Tokyo) 60(11), 696–699 (2007).
    • 38 Hu QX, Zhang GQ, Zhang RY, Hu DD, Wang HX, Ng TB. A novel aspartic protease with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the wild mushroom Xylaria hypoxylon. J. Biomed. Biotechnol. 2012, 728975 (2012).
    • 39 Song F, Wu S-H, Zhai Y-Z, Xuan Q-C, Wang T. Secondary metabolites from the genus Xylaria and their bioactivities. Chem. Biodivers. 11(5), 673–694 (2014).
    • 40 Amnuaykanjanasin A, Punya J, Paungmoung P et al. Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol. Lett. 251(1), 125–136 (2005).
    • 41 Winzeler EA, Shoemaker DD, Astromoff A et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429), 901–906 (1999).
    • 42 Jensen AN, Chindaudomsate W, Thitiananpakorn K, Mongkolsuk S, Jensen LT. Improper protein trafficking contributes to artemisinin sensitivity in cells lacking the KDAC Rpd3p. FEBS Lett. 588(21), 4018–4025 (2014).
    • 43 Decottignies A, Grant AM, Nichols JW, De Wet H, Mcintosh DB, Goffeau A. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J. Biol. Chem. 273(20), 12612–12622 (1998).
    • 44 Longtine MS, Mckenzie A 3rd, Demarini DJ et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(10), 953–961 (1998).
    • 45 Adams A, Gottschling DE, Kaiser CA, Stearns T. Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, NY, USA, 12 (1998).
    • 46 Standards NCFCL. Reference methods for broth dilution antifungal susceptibility testing of yeast: approved standard. NCCLS document M27-A (2002).
    • 47 Dhamgaye S, Devaux F, Manoharlal R et al. In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2. Antimicrob. Agents Chemother. 56(1), 495–506 (2012).
    • 48 Zhou Y, Wang G, Li Y et al. In vitro interactions between Aspirin and Amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob. Agents Chemother. 56(6), 3250–3260 (2012).
    • 49 Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52(1), 1 (2003).
    • 50 Wu X-Z, Cheng A-X, Sun L-M, Sun S-J, Lou H-X. Plagiochin E, an antifungal bis (bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim. Biophys. Acta 1790(8), 770–777 (2009).
    • 51 Belenky P, Camacho D, Collins JJ. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell. Rep. 3(2), 350–358 (2013). • Provides new perspective to antifungal drug research.
    • 52 Grintzalis K, Georgiou CD, Schneider YJ. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination. Anal. Biochem. 480, 28–30 (2015).
    • 53 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983).
    • 54 Zhao Y, Macgurn JA, Liu M, Emr S. The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. eLife 2, e00459 (2013).
    • 55 Hazen KC. Fungicidal versus fungistatic activity of terbinafine and itraconazole: an in vitro comparison. J. Am. Acad. Dermatol. 38(5 Pt 3), S37–S41 (1998).
    • 56 Vazquez JA. Combination antifungal therapy: the new frontier. Future Microbiol. 2(2), 115–139 (2007). • Provides a comprehensive overview of antifungal therapy.
    • 57 Gruda I, Dussault N. Effect of the aggregation state of amphotericin B on its interaction with ergosterol. Biochem. Cell. Biol. 66(3), 177–183 (1988).
    • 58 De Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat. Rev. Genet. 12(12), 833–845 (2011).
    • 59 Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863(12), 2977–2992 (2016).
    • 60 Guha G, Mandal T, Rajkumar V, Ashok Kumar R. Antimycin A-induced mitochondrial apoptotic cascade is mitigated by phenolic constituents of Phyllanthus amarus aqueous extract in Hep3B cells. Food Chem. Toxicol. 48(12), 3449–3457 (2010).
    • 61 Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal 11(1), 1–14 (1999).
    • 62 Vanden Berghe T, Denecker G, Brouckaert G, Krysko DV, D'herde K, Vandenabeele P. More than one way to die. In: Tumor Necrosis Factor: Methods and Protocols. Corti A, Ghezzi P (Eds). Humana Press Totowa, NJ, USA, 101–126 (2004).
    • 63 Liu Y, Liu X, Qu Y, Wang X, Li L, Zhao X. Inhibitors of reactive oxygen species accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob. Agents Chemother. 56(11), 6048–6050 (2012).
    • 64 Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51(5), 1000–1013 (2011).
    • 65 Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med. (Lausanne) 3, 11 (2016).
    • 66 Odds FC. Interactions among amphotericin B, 5-fluorocytosine, ketoconazole, and miconazole against pathogenic fungi in vitro. Antimicrob. Agents Chemother. 22(5), 763–770 (1982).
    • 67 Spanakis EK, Aperis G, Mylonakis E. New agents for the treatment of fungal infections: clinical efficacy and gaps in coverage. Clin. Infect. Dis. 43(8), 1060–1068 (2006).
    • 68 Wu W, Dai H, Bao L et al. Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J. Nat. Prod. 74(5), 1303–1308 (2011).
    • 69 Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc. Natl Acad. Sci. USA 108(17), 6733–6738 (2011).
    • 70 Wilcock BC, Endo MM, Uno BE, Burke MD. The C2′-OH of Amphotericin B plays an important role in binding the primary sterol of human but not yeast cells. J. Am. Chem. Soc. 135(23), 8488–8491 (2013).
    • 71 Brasseur R, Vandenbosch C, Van Den Bossche H, Ruysschaert JM. Mode of insertion of miconazole, ketoconazole and deacylated ketoconazole in lipid layers. A conformational analysis. Biochem. Pharmacol. 32(14), 2175–2180 (1983).
    • 72 Cope JE. Mode of action of miconazole on Candida albicans: effect on growth, viability and K+ release. J. Gen. Microbiol. 119(1), 245–251 (1980).
    • 73 Arora D, Sharma N, Singamaneni V et al. Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 23(12), 1312–1320 (2016).
    • 74 Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2, 64 (2012). •• Provides comprehensive overview of oxidative stress and programmed cell death in a model yeast. Present new knowledge and recent discovery.
    • 75 Menezes Regina A, Amaral C, Batista-Nascimento L et al. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Biochem. J. 414(2), 301–311 (2008).
    • 76 Mesa-Arango AC, Trevijano-Contador N, Roman E et al. The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob. Agents Chemother. 58(11), 6627–6638 (2014). • Describes a mechanism of action of Amphotericin B and its fungicidal effect.
    • 77 Zhao X, Hong Y, Drlica K. Moving forward with reactive oxygen species involvement in antimicrobial lethality. J. Antimicrob. Chemother. 70(3), 639–642 (2015).
    • 78 Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21, 1–6 (2014).
    • 79 Wang X, Zhao X. Contribution of oxidative damage to antimicrobial lethality. Antimicrob. Agents Chemother. 53(4), 1395–1402 (2009).
    • 80 Mangum LC, Borazjani A, Stokes JV et al. Organochlorine insecticides induce nadph oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase a(2)/arachidonic acid. Chem. Res. Toxicol. 28(4), 570–584 (2015).
    • 81 Cohen BA, Pilpel Y, Mitra RD, Church GM. Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. Mol. Biol. Cell 13(5), 1608–1614 (2002).
    • 82 Fernandes L, Rodrigues-Pousada C, Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol. Cell. Biol. 17(12), 6982–6993 (1997).
    • 83 Burger RM, Drlica K. Superoxide protects Escherichia coli from bleomycin mediated lethality. J. Inorg. Biochem. 103(9), 1273–1277 (2009).
    • 84 Burger RM, Peisach J, Blumberg WE, Horwitz SB. Iron-bleomycin interactions with oxygen and oxygen analogues. Effects on spectra and drug activity. J. Biol. Chem. 254(21), 10906–10912 (1979).
    • 85 Thorpe GW, Reodica M, Davies MJ et al. Superoxide radicals have a protective role during H2O2 stress. Mol. Biol. Cell 24(18), 2876–2884 (2013).
    • 86 Shingu-Vazquez M, Traven A. Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot. Cell 10(11), 1376–1383 (2011).
    • 87 Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5), 797–810 (2007).
    • 88 Kalyanaraman B, Darley-Usmar V, Davies KJ et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52(1), 1–6 (2012).
    • 89 Sun N, Fonzi W, Chen H et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob. Agents Chemother. 57(1), 532–542 (2013).
    • 90 Gulshan K, Schmidt JA, Shahi P, Moye-Rowley WS. Evidence for the bifunctional nature of mitochondrial phosphatidylserine decarboxylase: role in Pdr3-dependent retrograde regulation of PDR5 expression. Mol. Cell. Biol. 28(19), 5851–5864 (2008).
    • 91 Shahi P, Moye-Rowley WS. Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochim. Biophys. Acta 1794(5), 852–859 (2009).
    • 92 Zhizhang M, Pingping Z, Wanru C. Studies on the sedative and sleeping effects of Wuling mycelia and its pharmacological mechanism. Chin. Pharm. J. 6 (1999).
    • 93 Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res. 15(4), fov027 (2015).