We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The dynamic genome: transposons and environmental adaptation in the nervous system

    Hannah E Lapp

    Department of Psychology & Developmental Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125-3393, USA

    &
    Richard G Hunter

    *Author for correspondence:

    E-mail Address: Richard.Hunter@umb.edu

    Department of Psychology & Developmental Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125-3393, USA

    Published Online:https://doi.org/10.2217/epi.15.107

    Classically thought as genomic clutter, the functional significance of transposable elements (TEs) has only recently become a focus of attention in neuroscience. Increasingly, studies have demonstrated that the brain seems to have more retrotransposition and TE transcription relative to other somatic tissues, suggesting a unique role for TEs in the central nervous system. TE expression and transposition also appear to vary by brain region and change in response to environmental stimuli such as stress. TEs appear to serve a number of adaptive roles in the nervous system. The regulation of TE expression by steroid, epigenetic and other mechanisms in interplay with the environment represents a significant and novel avenue to understanding both normal brain function and disease.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 McClintock B. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol. 16, 13–47 (1951). • The first description of transposons and their activity.
    • 2 McClintock B. The significance of responses of the genome to challenge. Science 226(4676), 792–801 (1984). • Proposes that transposable elements (TEs) influence gene expression in response to environmental stressors.
    • 3 Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature 284(5757), 604–607 (1980).
    • 4 Ohno S. So much ‘junk’ DNA in our genome. Brookhaven Symp. Biol. 23, 366–370 (1972).
    • 5 The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306(5696), 636–640 (2004).
    • 6 Fort A, Hashimoto K, Yamada D et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46(6), 558–566 (2014).
    • 7 Tarallo V, Hirano Y, Gelfand BD et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4), 847–859 (2012).
    • 8 Walters RD, Kugel JF, Goodrich JA. InvAluable junk: the cellular impact and function of Alu and B2 RNAs. IUBMB Life 61(8), 831–837 (2009).
    • 9 Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160), 164–166 (1988).
    • 10 Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH. The role of transposable elements in health and diseases of the central nervous system. J. Neurosci. 33(45), 17577–17586 (2013).
    • 11 Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110(1–4), 462–467 (2005).
    • 12 Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12(9), 615–627 (2011).
    • 13 Wicker T, Sabot F, Hua-Van A et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8(12), 973–982 (2007).
    • 14 Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001).
    • 15 Goodier JL, Kazazian HH Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1), 23–35 (2008).
    • 16 Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science 254(5039), 1808–1810 (1991).
    • 17 Kulpa DA, Moran JV. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum. Mol. Genet. 14(21), 3237–3248 (2005).
    • 18 Kubo S, Seleme MC, Soifer HS et al. L1 retrotransposition in nondividing and primary human somatic cells. Proc. Natl Acad. Sci. USA 103(21), 8036–8041 (2006).
    • 19 Shi X, Seluanov A, Gorbunova V. Cell divisions are required for L1 retrotransposition. Mol. Cell Biol. 27(4), 1264–1270 (2007).
    • 20 Coufal NG, Garcia-Perez JL, Peng GE et al. L1 retrotransposition in human neural progenitor cells. Nature 460(7259), 1127–1131 (2009).
    • 21 Kano H, Godoy I, Courtney C et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23(11), 1303–1312 (2009).
    • 22 Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044), 903–910 (2005). • First study demonstrating L1 retrotransposition in the brain.
    • 23 Faulkner GJ, Kimura Y, Daub CO et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41(5), 563–571 (2009). • First study demonstrating L1 retrotransposition in the brain.
    • 24 Solyom S, Kazazian HH Jr. Mobile elements in the human genome: implications for disease. Genome Med. 4(2), 12 (2012).
    • 25 Perepelitsa-Belancio V, Deininger P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35(4), 363–366 (2003).
    • 26 Chiu YL, Greene WC. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu. Rev. Immunol. 26, 317–353 (2008).
    • 27 Chiu YL, Witkowska HE, Hall SC et al. High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl Acad. Sci. USA 103(42), 15588–15593 (2006).
    • 28 Vjp Robert NV, Rha Plasterk. RNA interference, transposon silencing, and cosuppression in the caenorhabditis elegans germ line: similarities and differences. Cold Spring Harb. Symp. Quant. Biol. 69, 397–402 (2004).
    • 29 Brennecke J, Aravin AA, Strak A et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6), 1089–1103 (2007).
    • 30 Goodier JL, Zhang L, Vetter MR, Kazazian HH. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol. Cell. Biol. 27(18), 6469–6483 (2007).
    • 31 Fedoroff NV. McClintock's challenge in the 21st century. Proc. Natl Acad. Sci. USA 109(50), 20200–20203 (2012).
    • 32 Zimmer C. Is most of our DNA garbage! The New York Times Magazine March 8th (2015).
    • 33 Moran JV, Deberardinis RJ, Kazazian HH Jr. Exon shuffling by L1 retrotransposition. Science 283(5407), 1530–1534 (1999).
    • 34 Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science 303(5664), 1626–1632 (2004). • Elegant explanation of the important role of TEs in driving genome evolution.
    • 35 Abrusan G, Krambeck HJ. The distribution of L1 and Alu retroelements in relation to GC content on human sex chromosomes is consistent with the ectopic recombination model. J. Mol. Evol. 63(4), 484–492 (2006).
    • 36 Hunter RG, Gagnidze K, McEwen BS, Pfaff DW. Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc. Natl Acad. Sci. USA 112(22), 6828–6833 (2014).
    • 37 Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472(7341), 115–119 (2011).
    • 38 Fedoroff NV. Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338(6108), 758–767 (2012).
    • 39 Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8(5), 464–478 (1998).
    • 40 Maumus F, Allen AE, Mhiri C et al. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 10, 624 (2009).
    • 41 Pritham EJ. Transposable elements and factors influencing their success in eukaryotes. J. Hered. 100(5), 648–655 (2009).
    • 42 Sanmiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20(1), 43–45 (1998).
    • 43 Erwin JA, Marchetto MC, Gage FH. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. 15(8), 497–506 (2014).
    • 44 Kapitonov VV, Jurka J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3(6), e181 (2005).
    • 45 Gage FH, Muotri AR. What makes each brain unique. Sci. Am. 306(3), 26–31 (2012).
    • 46 Mukamel Z, Tanay A. Hypomethylation marks enhancers within transposable elements. Nat. Genet. 45(7), 717–718 (2013).
    • 47 Wilda M, Demuth I, Concannon P, Sperling K, Hameister H. Expression pattern of the Nijmegen breakage syndrome gene, Nbs1, during murine development. Hum. Mol. Genet. 9(12), 1739–1744 (2000).
    • 48 Kidd JM, Graves T, Newman TL et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 143(5), 837–847 (2010).
    • 49 Bell G. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. University of California Press, CA, USA (1982).
    • 50 Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46, 21–42 (2012).
    • 51 Faulkner GJ, Carninci P. Altruistic functions for selfish DNA. Cell cycle 8(18), 2895–2900 (2009).
    • 52 Cotnoir-White D, Laperriere D, Mader S. Evolution of the repertoire of nuclear receptor binding sites in genomes. Mol. Cell. Endocrinol. 334(1–2), 76–82 (2011).
    • 53 Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol. Cell 55(2), 277–290 (2014).
    • 54 Bulut-Karslioglu A, Perrera V, Scaranaro M et al. A transcription factor-based mechanism for mouse heterochromatin formation. Nat. Struct. Mol. Biol. 19(10), 1023–1030 (2012).
    • 55 Maksakova IA, Mager DL, Reiss D. Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell. Mol. Life Sci. 65(21), 3329–3347 (2008).
    • 56 Harrow J, Frankish A, Gonzalez JM et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22(9), 1760–1774 (2012).
    • 57 Kellis M, Wold B, Snyder MP et al. Defining functional DNA elements in the human genome. Proc. Natl Acad. Sci. USA 111(17), 6131–6138 (2014).
    • 58 Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13(11), R107 (2012).
    • 59 Kapusta A, Kronenberg Z, Lynch VJ et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9(4), e1003470 (2013).
    • 60 Cabili MN, Trapnell C, Goff L et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25(18), 1915–1927 (2011).
    • 61 Baillie JK, Barnett MW, Upton KR et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374), 534–537 (2011).
    • 62 Perrat PN, Dasgupta S, Wang J et al. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340(6128), 91–95 (2013).
    • 63 Bundo M, Toyoshima M, Okada Y et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2), 306–313 (2014).
    • 64 Evrony GD, Cai X, Lee E et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3), 483–496 (2012). •• Provides a lower bound for L1 insertion rate in the brain.
    • 65 Upton K, Gerhardt DJ, Jesuadian JS et al. Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161(2), 228–239 (2015).
    • 66 Kurnosov AA, Ustyugova SV, Nazarov VI et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS ONE 10(2), e0117854 (2015). •• Provides an upper bound for L1 insertion rate in the mammalian hippocampus.
    • 67 Muotri AR, Zhao C, Marchetto MC, Gage FH. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19(10), 1002–1007 (2009).
    • 68 Ewing AD, Kazazian HH Jr. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20(9), 1262–1270 (2010).
    • 69 Allen TA, Von Kaenel S, Goodrich JA, Kugel JF. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 11(9), 816–821 (2004).
    • 70 Mariner PD, Walters RD, Espinoza CA et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29(4), 499–509 (2008).
    • 71 Ponomarev I, Rau V, Eger EI, Harris RA, Fanselow MS. Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology 35(6), 1402–1411 (2010).
    • 72 Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci. 32(5), 1884–1897 (2012).
    • 73 Hunter RG, Murakami G, Dewell S et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc. Natl Acad. Sci. USA 109(43), 17657–17662 (2012). • Demonstrates silencing of TE expression in the hippocampus in response to acute environmental stress through histone methylation.
    • 74 Maze I, Feng J, Wilkinson MB, Sun H, Shen L, Nestler EJ. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc. Natl Acad. Sci. USA 108(7), 3035–3040 (2011).
    • 75 Kuwabara T, Hsieh J, Muotri A et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 12(9), 1097–1105 (2009).
    • 76 Muotri AR, Marchetto MC, Coufal NG et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322), 443–446 (2010).
    • 77 Leung DC, Lorincz MC. Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem. Sci. 37(4), 127–133 (2012).
    • 78 Hancks DC, Kazazian HH Jr. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22(3), 191–203 (2012).
    • 79 Li W, Prazak L, Chatterjee N et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16(5), 529–531 (2013).
    • 80 Day DS, Luquette LJ, Park PJ, Kharchenko PV. Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol. 11(6), R69 (2010).
    • 81 Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23(21), 2484–2489 (2009).
    • 82 Karimi MM, Goyal P, Maksakova IA et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell stem cell 8(6), 676–687 (2011).
    • 83 Thompson PJ, Dulberg V, Moon KM et al. hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells. PLoS Genet. 11(1), e1004933 (2015).
    • 84 Liu S, Brind'amour J, Karimi MM et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev. 28(18), 2041–2055 (2014).
    • 85 Rowe HM, Jakobsson J, Mesnard D et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278), 237–240 (2010).
    • 86 Fasching L, Kapopoulou A, Sachdeva R et al. TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells. Cell Rep. 10(1), 20–28 (2015).
    • 87 Barna M, Merghoub T, Costoya JA et al. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev. Cell 3(4), 499–510 (2002).
    • 88 Guidez F, Howell L, Isalan M et al. Histone acetyltransferase activity of p300 is required for transcriptional repression by the promyelocytic leukemia zinc finger protein. Mol. Cell. Biol. 25(13), 5552–5566 (2005).
    • 89 Guidez F, Parks S, Wong H et al. RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 104(47), 18694–18699 (2007).
    • 90 Puszyk W, Down T, Grimwade D et al. The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J. 32(13), 1941–1952 (2013).
    • 91 Wantanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588(2), 341–345 (1992).
    • 92 Hunter RG, McEwen BS. Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics 5(2), 177–194 (2013).
    • 93 McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87(3), 873–904 (2007).
    • 94 Gray JD, Rubin TG, Hunter RG, McEwen BS. Hippocampal gene expression changes underlying stress sensitization and recovery. Mol. Psychiatry 19(11), 1171–1178 (2014).
    • 95 Griffiths BB, Hunter RG. Neuroepigenetics of stress. Neuroscience 275, 420–435 (2014).
    • 96 Hunter RG. Epigenetic effects of stress and corticosteroids in the brain. Front. Cell. Neurosci. 6, 18 (2012).
    • 97 Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc. Natl Acad. Sci. USA 106(49), 20912–20917 (2009).
    • 98 Hunter RG, McEwen BS, Pfaff DW. Environmental stress and transposon transcription in the mammalian brain. Mob. Genet. Elements 3(2), e24555 (2013).
    • 99 Espinoza CA, Goodrich JA, Kugel JF. Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA 13(4), 583–596 (2007).
    • 100 Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11(9), 822–829 (2004).
    • 101 Davis HP, Squire LR. Protein synthesis and memory: a review. Psychol. Bull. 96(3), 518–559 (1984).
    • 102 Jacobsen BM, Jambal P, Schittone SA, Horwitz KB. ALU repeats in promoters are position-dependent co-response elements (coRE) that enhance or repress transcription by dimeric and monomeric progesterone receptors. Mol. Endocrinol. 23(7), 989–1000 (2009).
    • 103 Gombart AF, Saito T, Koeffler HP. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics 10, 321 (2009).
    • 104 Lin C, Yang L, Tanasa B et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6), 1069–1083 (2009).
    • 105 Holzman DC. Aberrant chromosomes: not so random after all? J. Natl Cancer Inst. 102(6), 368–369 (2010).
    • 106 Dupressoir A, Lavialle C, Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33(9), 663–671 (2012).
    • 107 Katsumata K, Ikeda H, Sato M et al. Tissue-specific high-level expression of human endogenous retrovirus-R in the human adrenal cortex. Pathobiology 66(5), 209–215 (1998).
    • 108 Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12(4), 246–258 (2011).
    • 109 Fombonne E. Epidemiological trends in rates of autism. Mol. Psychiatry 7(Suppl. 2), S4–S6 (2002).
    • 110 Li W, Jin Y, Prazak L, Hammell M, Dubnau J. Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS ONE 7(9), e44099 (2012).
    • 111 Felitti Vj AR. The relationship of adverse childhood experiences to adult medical disease, psychiatric disorders and sexual behavior: implications for healthcare. In: The Impact Of Early Life Trauma On Health And Disease: The Hidden Epidemic.. Lanius RA, Vermetten E, Pain C (Eds). Cambridge University Press, Cambridge, New York, USA, xvii, 315 (2010).
    • 112 Cabrera OA, Hoge CW, Bliese PD, Castro CA, Messer SC. Childhood adversity and combat as predictors of depression and post-traumatic stress in deployed troops. Am. J. Prev. Med. 33(2), 77–82 (2007).
    • 113 Rusiecki JA, Chen L, Srikantan V et al. DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics 4(1), 29–40 (2012).
    • 114 Bremner JD, Randall P, Vermetten E et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – a preliminary report. Biol. Psychiatry 41(1), 23–32 (1997).
    • 115 Wignall EL, Dickson JM, Vaughan P et al. Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol. Psychiatry 56(11), 832–836 (2004).
    • 116 Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology 62(3), 1308–1321 (2012).
    • 117 Nawa H, Takahashi M, Patterson PH. Cytokine and growth factor involvement in schizophrenia–support for the developmental model. Mol. Psychiatry 5(6), 594–603 (2000).
    • 118 Brown ASS, Susser ES. In utero infection and adult schizphrenia. Ment. Retard. Dev. Disabil. Res. Rev. 8, 51–57 (2002).
    • 119 Pasternak O, Westin CF, Bouix S et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J. Neurosci. 32(48), 17365–17372 (2012).
    • 120 Crow TJ. ‘The missing genes: what happened to the heritability of psychiatric disorders?’ Mol. Psychiatry 16(4), 362–364 (2011).
    • 121 Alfahad T, Nath A. Retroviruses and amyotrophic lateral sclerosis. Antiviral Res. 99(2), 180–187 (2013).