تعیین محتوی و ارزیابی خطر بالقوه بوم‌شناختی هیدروکربن‌های آروماتیک چندحلقه‌ای (PAHs) در خاک سطحی اطراف مجتمع دفع و پردازش پسماند جامد شهری آرادکوه تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 دانشیار علوم محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

3 استادیار علوم محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

چکیده

هیدروکربن‌های آروماتیک چندحلقه‌ای (PAHs) آلاینده‌های فراگیر با قابلیت ناهنجاری‌زایی، جهش‌زایی و سرطان‌زایی هستند که وجود آن‌ها در محیط و یا قرار گرفتن در معرض آن‌ها می‌تواند خطرات بالقوه‌ای را برای محیط‌زیست و سلامت انسان بدنبال داشته باشد. بنابراین، این مطالعه با هدف شناسایی، تعیین مقادیر و ارزیابی خطر بوم‌شناختی PAHها در نمونه‌های خاک سطحی در مجاورت مجتمع پردازش و بازیافت آرادکوه تهران در سال 1399 انجام شد. بدین منظور، 30 نمونه خاک سطحی از 10 ایستگاه نمونه‌برداری در مجاورت مجتمع آرادکوه جمع‌آوری شد. پس از استخراج آنالیت‌ها، از روش کروماتوگرافی گازی-طیف‌سنجی جرمی (GC-MS) برای شناسایی و تعیین محتوی ترکیبات PAH در نمونه‌ها استفاده شد. نتایج نشان داد که، مجموع غلظت 16 هیدروکربن آروماتیک شناسایی شده از 863 تا 1384 میکروگرم در کیلوگرم با میانگین 1123 میکروگرم در کیلوگرم متغیر بود. از طرفی، ترکیبات کرایسن و بنزو (جی،اچ،آی) پریلندر نمونه‌های خاک "فاقد خطر بوم‌شناختی" و سایر ترکیبات واجد "خطر بوم‌شناختی متوسط" بودند. از طرفی، با توجه به مقادیر محاسبه شده  RQ∑PAHs(MPCsکه برای همه ایستگاه‌های نمونه‌برداری کوچک‌تر از 800 بود، نتیجه گرفته شد که خطر بوم‌شناختی مربوط به مجموع مقادیر 16 ترکیب PAHنمونه‌های خاک در همه ایستگاه‌ها در دسته "خطر متوسط 2" بود. نتایج مقایسه میانگین مقادیر ترکیبات PAH شناسایی شده در نمونه‌ها با بیشینه رواداری (MAC) سازمان حفاظت محیط‌زیست ایران نشان داد که بجز در مورد ترکیباتبنزو (آلفا) آنتراسن (B(a)A) و بنزو (جی،اچ،آی) پریلن (B(ghi)p )، میانگین غلظت سایر ترکیبات PAH کوچک‌تر از حد مجاز بوده است. علاوه بر این، میانگین محتوی همه ترکیبات PAH شناسایی شده در نمونه‌های خاک سطحی منطقه مورد مطالعه از بیشینه رواداری وزارت بهداشت آلمان کوچک‌تر بود. به طور کلی، با توجه به مخاطرات هیدروکربن‌های آروماتیک چندحلقه‌ای بر سلامت محیط و انسان، نسبت به شناسایی، تعیین محتوی، منشاء‌یابی و نظارت منظم و دوره‌ای این ترکیبات در محیط و کنترل منابع تولید آن‌ها به منظور حفظ سلامت شهروندان توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Concentrations and Potential Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soils from Vicinity of Arad-Kouh Processing and Disposal Complex, Tehran, Iran

نویسندگان [English]

  • Seyedeh Maryam Mohammadi 1
  • Bahareh Lorestani 2
  • Soheil Sobhan Ardakani 2
  • Mehrdad Cheraghi 2
  • Maryam Kiani Sadr 3
1 PhD. Candidate, Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
2 Associate Professor, Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan
3 Assistant Professor, Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
چکیده [English]

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants with teratogenic, mutagenic and carcinogenic potential, which can pose potential risks to the environment and human health. Therefore, this study was conducted todetect and assess the potential ecological risk of PAHs in surface soils in the vicinity of Arad-Kouh Processing and Disposal Complex, Tehran, Iran, in 2020. In so doing, 30 surface soil samples were collected from 10 sampling sites adjacent to the Arad-Kouh complex. After extraction of analytes, the gas chromatography/mass spectrometry (GC–MS) method was used for determination of 16 PAHs in the samples. The results showed that the total concentrations of 16 PAHs (∑16PAHs) ranged from 863 to 1384 µg/kg with an average of 1123 µg/kg. Moreover, Chy and B(ghi)P showed no potential ecological risk, while other PAHs had a moderate potential ecological risk. Also, as computed values of RQ∑PAHs(MPCs for all the sampling sites were lower than 800, the total ecological risk of PAHs in surface soil samples of the study area was classified in the moderate-risk2 category. Based on the results, although the mean concentrations of B(a)A and B(ghi)p < /span> were higher than MPC established by Iranian Department of Environment, the mean concentrations of all of the 16 PAHs were lower than MPC established by MHWS. Overall, since PAHs have adverse effects on human health, detection and determination of concentration, source identification, and also periodical monitoring of these compounds in the environment is recommended in order to safeguard human health maintenance.

کلیدواژه‌ها [English]

  • Municipal solid waste
  • Human health
  • Ubiquitous pollutants
  1. سازمان حفاظت محیط‌زیست ایران. 1393. استانداردهای کیفیت منابع خاک و راهنماهای آن. معاونت محیط‌زیست انسانی، دفتر آب و خاک، 161 صفحه.
  2. حضرت‌زاده، ش. و س. سبحان اردکانی. 1397. مطالعه آلودگی به روی، سرب، کادمیم و مس خاک سطحی بوستان­های شهر همدان. پژوهش‌های خاک، دوره 32، شماره 3، 413-399.
  3. محمدمرادی، ب.، س.، سبحان اردکانی و م. چراغی. 1396. ارزیابی شاخص مخاطره بوم‌شناختی فلزات سنگین در خاک سطحی بوستان­های شهری تهران. سلامت و محیط‌زیست، دوره 10، شماره 4، 441-429.
  4. Blanchard, M., M.J., Teil, D., Ollivon, L., Legenti, and M., Chevreuil. 2004. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environmental Research. 95: 184-197.
  5. Bozlaker, A., A., Muezzinoglu, and M., Odabasi. 2008. Atmospheric concentrations, dry deposition and airesoil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. Journal of Hazardous Materials. 153: 1093-1102.
  6. Cachada, A., P., Pato, T., Tocha-Santos, E., Ferreira da Silva, and A.C., Duarte. 2012. Levels, sources and potential human health risks of organic pollutants in urban soils. Science of the Total Environment. 430: 184-192.
  7. Canadian Council of Ministers of the Environment. 2010. Polycyclic Aromatic Hydrocarbons. Canadian Soil Quality Guide-Lines for Protection of Environmental and Human Health. In Canadian Soil Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada.
  8. Cao, Z.G., J.L., Liu, Y., Luan, Y.L., Li, M.Y., Ma, J., Xu, and S.L., Han. 2010. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology. 19: 827-837.
  9. Cao, Z., M., Wang, Q., Chen, and C., Zhu. 2019. Spatial, seasonal and particle size dependent variations of PAH contamination in indoor dust and the corresponding human health risk. Science of the Total Environment. 653: 423-430.
  10. Cetin, B., S., Yurdakul, M., Keles, I., Celik, F., Ozturk, and C., Dogan. 2017. Atmospheric concentrations, distributions and air-soil exchange tendencies of PAHs and PCBs in a heavily industrialized area in Kocaeli, Turkey. Chemosphere. 183: 69-79.
  11. Chen C-F., Y-R., Ju, Y.C., Lim, S-L., Hsieh, M-L., Tsai, P-P., Sun, R., Katiyar, C-W., Chen, and C-D., Dong. 2019. Determination of polycyclic aromatic hydrocarbons in sludge from water and wastewater treatment plants by GC-MS. International Journal of Environmental Research and Public Health. 16(14): 2604.
  12. Crommentuijn, T., D., Sijm, J., De Bruijn, K., Van Leeuwen, and E., Van De Plassche. 2000. Maximum permissible and negligible concentrations for some organic substances and pesticides. Journal of Environmental Management. 58: 297-312.
  13. Cui, X., J., Dong, Z., Huang, C., Liu, X., Qiao, X., Wang, X., Zhao, B., Zheng, and J., Shen. 2020. Polychlorinated biphenyls in the drinking water source of the Yangtze River: characteristics and risk assessment. Environmental Sciences Europe. 32: 29.
  14. Emoyan, O.O., E.O., Onocha, and G.O., Tesic. 2020. Concentration assessment and source evaluation of 16 priority polycyclic aromatic hydrocarbons in soils from selected vehicle-parks in southern Nigeria. Scientific African. 7: e00296.
  15. Gholamalifard, M., J., Phillips, and M., Jalili Ghazizade. 2017. Evaluation of unmitigated options for municipal waste disposal site in Tehran, Iran using an integrated assessment approach. Journal of Environmental Planning and Management. 60(5): 792-820.
  16. Hakanson, L. 1980. An ecological risk index for aquatic pollution control- A sedimentological approach. Water Research. 14(8): 975-1001.
  17. Halfadji, A., A., Touabet, F., Portet-Koltalo, F., Le-Derf, and N., Merlet-Machour. 2019. Concentrations and source identification of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in agricultural, urban/residential, and industrial soils, east of Oran (Northwest Algeria). Polycyclic Aromatic Compounds. 39(4): 299-310.
  18. Hussain, K., and R.R., Hoque. 2015. Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere. 119: 794-802.
  19. Ju, J.H., I.S., Lee, W.J., Sim, H., Eun, and J.E., Oh. 2009. Analysis and evaluation of chlorinated persistent organic compounds and PAHs in sludge in Korea. Chemosphere. 74: 441-447.
  20. Kalf, D.F., T., Crommentuijn, and E.J., Van De Plassche. 1997. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology and Environmental Safety. 36: 89-97.
  21. Kanaly, R.A., and S., Harayama. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology. 182: 2059-2067.
  22. Karyab, H., M., Yunesian, S., Nasseri, A.H., Mahvi, R., Ahmadkhaniha, N., Rastkari, and R., Nabizadeh. 2013. Polycyclic aromatic hydrocarbons in drinking water of Tehran, Iran. Journal of Environmental Health Science and Engineering. 11: 25.
  23. Liu, Y., L., Chen, J.J., Zhao, Y., Wei, Z., Pan, X.Z., Meng, Q., Huang, and W., Li. 2010. Polycyclic aromatic hydrocarbons in the surface soil of Shanghai, China: concentrations, distribution and sources. Organic Geochemistry.41: 355-362.
  24. Liu, S., X., Xia, Y., Zhai, R., Wang, T., Liu, and S., Zhang. 2011. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs). Chemosphere. 82: 223-228.
  25. Ma, Y., A., Liu, P., Egodawatta, J., McGree, and A., Goonetilleke. 2017. Quantitative assessment of human health risk posed by polycyclic aromatic hydrocarbons in urban road dust. Science of the Total Environment. 575: 895-904.
  26. Majlessi, M., M., Zamanzadeh, N., Alavi, N., Amanidaz, and R., Bakhshoodeh. 2019.  Generation rates and current management of municipal, construction and demolition wastes in Tehran.  Journal of Material Cycles and Waste Management. 21: 191-200.
  27. Malawska, M., and B., Wiłkomirski. 2001. An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) in the area of the railway junction Iława Główna, Poland. Water, Air, & Soil Pollution. 127: 339-349.
  28. Man, Y.B., K.L., Chow, Y., Kang, and M.H., Wong. 2013. Mutagenicity and genotoxicity of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons and dioxins/furans. Mutation Research. 752: 47-56.
  29. Melnyk, A., A., Dettlaff, K., Kuklińska, J., Namieśnik, and L., Wolska. 2015. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill. Science of the Total Environment. 530-531: 18-27.
  30. Ministry of Health, Welfare and Sport, National Institute for Public Health and the Environment. 2012. Environmental risk limits for polycyclic aromatic hydrocarbons (PAHs) for direct aquatic, benthic, and terrestrial toxicity. 339 p.
  31. Moore, F., R., Akhbarizadeh, B., Keshavarzi, S., Khabazi, A., Lahijanzadeh, and M., Kermani. 2015. Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environmental Monitoring and Assessment. 187: 207.
  32. Mostafa, R.A., L.T., Wade, T.S., Sweet, A.K.A., Al-Alimi, and O.A., Barakat. 2009. Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area, Gulf of Aden, Yemen. Journal of Marine Systems. 78: 1-8.
  33. Oleszczuk, P., and S., Baran. 2003. Degradation of Individual Polycyclic Aromatic Hydrocarbons
  34. (PAHs) in soil polluted with aircraft fuel. Polish Journal of Environmental Studies. 12: 431-437.
  35. Olgun, B., and G., Doğan. 2020. Polycyclic aromatic hydrocarbon concentrations in soils of greenhouses located in Aksu Antalya, Turkey. Water Science and Technology. 81(2): 283-292.
  36. Omar, W.A.M., and H.M., Mahmoud. 2017. Risk assessment of polycyclic aromatic hydrocarbons (PAHs) in River Nile up- and downstream of a densely populated area. Journal of Environmental Science and Health, Part A. 52(2): 166-173.
  37. Plachá, D., H., Raclavská, D., Matýsek, and M.H., Rümmeli. 2009. The polycyclic aromatic hydrocarbon concentrations in soils in the Region of Valasske Mezirici, the Czech Republic. Geochemical Transactions. 10: 12.
  38. Perra, G., K., Pozo, C., Guerranti, D., Lazzeri, V., Volpi, S., Corsolini, and S., Focardi. 2011. Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in superficial sediment from 15 Italian marine protected areas (MPA). Marine Pollution Bulletin. 62: 874-877.
  39. Saeedi, M., L.Y., Li, and M., Salmanzadeh. 2012. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials. 227-228: 9-17.
  40. Sanctorum, H., M., Elskens, M., Leermakers, Y., Gao, A., Charriau, G., Billon, S., Goscinny, W., De Cooman, and W., Baeyens. 2011. Sources of PCDD/Fs, non-ortho PCBs and PAHs in sediments of high and low impacted transboundary rivers (Belgium–France). Chemosphere. 85: 203-209.
  41. Sezgin, N., H., Kurtulus, G., Demir, S., Nemlioglu, and C., Bayat. 2004. Determination of heavy metal concentration in street dusts in Istanbul E-5 highway. Environment International. 29: 979-985.
  42. Shen, G.F., W., Wang, Y.F., Yang, J.N., Ding, M.A., Xue, Y.J., Min, C., Zhu, H.Z., Shen, W., Li, B., Wang, R., Wang, L., Wang, S., Tao, and A.G., Russell. 2011. Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas-particle partitioning. Environmental Science and Technology. 45: 1206-1212.
  43. Sobhanardakani, S. 2018. Human health risk assessment of potentially toxic heavy metals in the atmospheric dust of city of Hamedan, west of Iran. Environmental Science and Pollution Research. 25(28): 28086-28093.
  44. Sobhanardakani, S. 2019. Ecological and human health risk assessment of heavy metals content of atmospheric dry deposition, a case study: Kermanshah, Iran. Biological Trace Element Research. 187(2): 602-610.
  45. Soltani, N., B., Keshavarzi, F., Moore, T., Tavakol, A.R., Lahijanzadeh, N., Jaafarzadeh, and M., Kermani. 2015. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment. 505: 712-723.
  46. Tipmanee, D., W., Deelaman, S., Pongpiachan, K., Schwarzer, and P., Sompongchaiyakul. 2012. Using polycyclic aromatic hydrocarbons (PAHs) as a chemical proxy to indicate tsunami 2004 backwash in Khao Lak coastal area, Thailand. Natural Hazards and Earth System Sciences. 12: 1441-1451.
  47. USEPA. 1996. 8275A Method. Semivolatile Organic Compounds (PAHs and PCBs) in Soils/Sludges and Solid Wastes Using Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS). 23 p.
  48. USEPA. 2014. Method 3500C, Organic Extraction and Sample Preparation. United States Environmental Protection Agency, 19 p.
  49. USEPA. 2016. United States Environmental Protection Agency Priority Pollutant List. Available at https://www.epa.gov/sites/production/files/ 2015-09/documents/priority-pollutant-list-epa.pdf.
  50. Vane, C.H., A.W., Kim, D., Beriro, M.R., Cave, K., Knights, V., Moss-Hayes, and P.C., Nathanail. 2014. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry. 51: 303-314.
  51. Wang, Z., Z., Liu, Y., Yang, T., Li, and M., Liu. 2012. Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere. 89: 221-227.
  52. Wang, L., S., Zhang, L., Wang, W., Zhang, X., Shi, X., Lu, X., Li, and X., Li. 2018a. Concentration and risk evaluation of polycyclic aromatic hydrocarbons in urban soil in the typical semi-arid city of Xi’an in Northwest China. International Journal of Environmental Research and Public Health. 15: 607.
  53. Wang, D., J., Ma, H., Li, and X., Zhang. 2018b. Concentration and potential ecological risk of PAHs in different layers of soil in the petroleum-contaminated areas of the Loess Plateau, China. International Journal of Environmental Research and Public Health. 15: 1785.
  54. Yang, Y., L.A., Woodward, Q.X., Li, and J., Wang. 2014. Concentrations, source and risk assessment of polycyclic aromatic hydrocarbons in soils from Midway Atoll, North Pacific Ocean. PLoS One. 9(1): e86441.
  55. Yang, Q., H., Chen, and B., Li. 2015. Polycyclic aromatic hydrocarbons (PAHs) in indoor dusts of Guizhou, southwest of China: status, sources and potential human health risk. PLoS One. 10(2): e0118141.
  56. Zhang, G., Z., Pan, X., Wang, X., Mo, and X., Li. 2015. Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake, China. Environmental Monitoring and Assessment. 187: 173.
  57. Zhou, J.L., E., Siddiqui, H.H., Ngo, and W., Guo. 2014. Estimation of uncertainty in the sampling and analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons from contaminated soil in Brighton, UK. Science of the Total Environment. 497: 163-171.