تخمین منحنی رطوبتی تعدادی از خاک‌های شور و شور و سدیمی با استفاده از توابع انتقالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی علوم خاک دانشگاه تهران

2 دانشیار گروه مهندسی علوم خاک دانشگاه تهران

3 کارشناس ارشد پژوهشکده تحقیقات کشاورزی، پزشکی و صنعتی کرج

چکیده

حدود 20 میلیون هکتار از اراضی کشورمان را خاک­های مبتلا به نمک تشکیل می­دهد. هدف از این تحقیق اشتقاق توابع انتقالی تعدادی از خاک­های مبتلا به نمک جهت پیش­بینی پارامترهای معادله وان­گنوختن و رطوبت در مکش­های مختلف با استفاده از خصوصیات زودیافت خاک بود. به­ همین منظور 68 نمونه خاک از خاک­های جنوب تهران انتخاب گردید (خاک­های شور و شور و سدیمی). منحنی رطوبتی خاک­ها در پتانسیل­های ماتریک صفر، 10-، 33-، 100-، 300-، 500-، 1000- و 1500- کیلو پاسکال تعیین شدند. فراوانی نسبی ذرات خاک، جرم ویژه ظاهری، کربنات کلسیم، کربن­آلی، EC و SAR اندازه­گیری شده و پارامترهای معادله وان­گنوختن نیز با استفاده از نرم­افزار RETC بدست آمد. همچنین کارایی توابع بدست آمده در تخمین منحنی رطوبتی با تعدادی از توابعی که قبلاً توسط محققین مختلف ارائه شده بود (13 تابع) مقایسه گردید. بطورکلی یافته­های این پژوهش نشان داد: 1- با استفاده از توابع انتقالی می­توان نقاط مختلف منحنی رطوبتی خاک و پارامترهای معادله وان­گنوختن را به میزان قابل­قبولی تخمین زد (در توابع نقطه­ای: 577/0≤ R2Adj ≤ 844/0 و 0296/0 ≥ RMSE(cm3/cm3) ≥ 0121/0). 2- نتایج آنالیز حساسیت نشان داد که حساسیت اکثر توابع نقطه­ای به تغییرات جرم مخصوص ظاهری بیشتر از بقیه متغیرها بوده و نسبت رس به سیلت، EC و شن در مراتب بعدی قرار می­گیرند. 3- با توجه به ضریب پارامتر EC در معادلات و با توجه به ضرایب همبستگی جزئی و نتایج آنالیز حساسیت، مقادیر بالای پارامترEC می­تواند تا حدودی توزیع اندازه منافذ و نهایتاً شکل منحنی رطوبتی را بواسطه انبساط و انقباض تغییر داده و این تغییرات را می­توان با وارد کردن  متغیرهای EC و SAR در ایجاد توابع، تا حدودی لحاظ کرد. 4- مقایسه توابع قبلی ارائه­شده و توابع بدست آمده نشان می­دهد که توابع بدست آمده در این تحقیق، بهترین توابع در تخمین منحنی رطوبتی خاک­های مورد مطالعه می­باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Moisture Retention Curve in Some Saline and Saline-sodic Soils with Pedotransfer Functions

نویسندگان [English]

  • Naser Khaleghpanah 1
  • M. Shorafa 2
  • S. Teimouri 3
1 Ph.D. Student of Soil Science, University College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
2 Associate Professor of Soil Science Department, University College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
3 Master Of Science-Soil Science, Agricultural, Medical and Industrial Research School, Karaj, Iran
چکیده [English]

Salt-affected soils cover up to 20 million hectares of our country. The objective of this study was to derive PTFs of some salt-affected soils to predict the parameters of van Genuchten equation and water retention at a pre-defined potential from readily/easily obtainable soil characteristics. For this purpose, 68 soil samples were chosen from south part of Tehran (saline and saline-sodic soils). Moisture retention curve for these samples were determined at matric potential of 0, -10, -33, -100, -300, -500, -1000 and -1500 kPa. Particle size distribution, calcium carbonate, bulk density, organic carbon, EC and SAR were measured and RETC program was used to obtain the Van Genuchten equation parameters. As to the EC and SAR effect on pore size distribution of soil, these parameters were used in pedotransfer functions as predictor parameters. Also, performance of derived functions in estimation of moisture retention curve was compared with a number of functions (13 functions) that previously were provided by different researchers. Generally, the result of this study showed: 1- Water retention at a pre-defined potential and parameters of van Genuchten equation can be estimated by pedotransfer functions with reasonable accuracy (point transfer functions: 0.844 R2Adj 0.577 and 0.0296 RMSE(cm3/cm3) 0.0121), 2- Sensitivity analysis results showed that the sensitivity of most point functions to changes in bulk density was more than the rest of the parameters and clay-silt ratio, EC, and sand were at the next levels,  3- Considering the coefficient of EC in the equations, partial coefficients of correlation, and results of sensitivity analysis, higher amounts of EC could somewhat affect pore size distribution and, consequently, the shape of moisture retention curve of the soils. This change, which is caused by swelling and shrinkage, to some extent can be predicted via introduction of EC and SAR parameters in developing the equations,4- Comparison of previous functions with those obtained in this study show that derived functions in this research are the best functions for estimation of soil moisture retention curve.

کلیدواژه‌ها [English]

  • Pedotransfer functions
  • van Genuchten parameters
  • Soil moisture retention curve
  • Saline soils
  • Saline-Sodic soils
  1. بی­نام. 1361. گزارش مطالعات خاکشناسی نیمه­تفضیلی اراضی جنوب تهران(استان تهران). وزارت کشاورزی و عمران روستایی. سازمان تحقیقات کشاورزی و منابع طبیعی. مؤسسه تحقیقات خاک و آب. نشریه شماره 616.
  2. رضایی، ع و ا. سلطانی. 1382. مقدمه­ای بر تحلیل رگرسدیون کاربردی. چاپ دوم. مرکز نشر دانشگاه صنعتی اصفهان.
  3. Abbasi, Y., B. Ghanbarian-Alavijeh, A. M. Liaghat, and M. Shorafa. 2011. Evaluation of Pedotransfer Functions for Estimating Soil Water Retention Curve of Saline and Saline-Alkali Soils of Iran. Pedosphere. 21(2): 230-237.
  4. Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 9: 177-213.
  5. Campbell, G. S. 1985. Soil Physics with Basic. Elsevier, New York.
  6. Carter, M. R., and E. G. Gregorich. 2008. Soil Sampling and Methods of Analysis. Canadian society of soil science. Boca Raton, FL, USA, CRC Press.
  7. Chatterjee, S., and A. S. Hadi. 1988. Sensitivity analysis in linear regression. John Wiley & Sons, New York.
  8. Ghorbani Dashtaki, Sh., and M. Homaee. 2004. Using geometric mean particle diameter to derive point and continuous pedotransfer functions. In Whrle, N. and Scheurer, M. (eds.) EuroSoil. September 4–12, 2004. Freiburg, Germany. 10(30): 1–10.
  9. Gupta, S. C., and W. E. Larson. 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Res. Research. 15(6): 1633-1635.
  10. Hillel, D. 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, San Diego, CA.
  11. Khodaverdiloo, H., and M. Homaee. 2004. Pedotransfer functions of some calcareous soils. 10(27): 1–11. In EuroSoil. N. Whrle, and M. Scheurer, (eds.). 4–12 Sept. 2004. Freiburg, Germany.
  12. Lima, L. A., M. E. Grismer, and D. R. Nielsen. Salinity effect on yolo loam hydraulic properties. Soil Sci. 150(1): 451-458.
  13. Morgan, R. P. C. 2005. Soil erosion & Conservation. Third edition. Blackwell Publishing. United Kingdom.
  14. Mugabe, F. T. 2004. Pedotransfer functions for prediction three points on the moisture characteristics curve of a Zimbawean soil. Asian J. Plant Sci. 3(6): 679-682.
  15. Pachepsky, Ya. A., D. Timlin, and G. Varallyay. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60: 727-73.
  16. Rajkai, K., S. Kabos, and M. Th. van Genuchten. 2004. Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil Till. Res. 79: 145–152.
  17. Rajkai, K., S. Kabos, M. Th. van Genuchten, and P. E. Jansson. 1996. Estimation of water retention characteristics from the bulk density and particle-size distribution of Swedish soils. Soil Sci. 161: 832-845.
  18. Rawls, W. J., and D. L. Brakenziek. 1989. Estimation of soil water retention and hydraulic properties. P. 275-300. In H. J. Morel-Seytoux, (ed.) Unsaturated Flow in Hydrologic Modeling-Theory and Practice. Kluwer Academic Publishing, Dordrecht.
  19. Ruiz, V., L. Wu, and J. Lu. 2005. Effect of sodicity on the water characteristics of six California soils. In The ASA-CSSA-SSSA International Annual Meetings. 6-10 Nov. Salt Lake City, UT.
  20. Russo, D., and Bresler. 1977. Effect of mixed Na/Ca solutions on the hydraulic properties of unsaturated soils. Soil Sci. Soc. Am. J. 41: 713-717.
  21. Russo, D., and Bresler. 1980. Soil-water-suction relationships as affected by soil solution composition and concentration. p. 287-296. In A. Banin and U. Kafkafi (ed.) Agrochemicals in soils. Pergamon Press, N. Y. Elmsford.
  22. Saxton, K. E., W. J. Rawls, J. S. Romberger, and R. I. Papendick. 1986. Estimating generalized soil water characteristics from texture. Soil Sci. Soc. Am. J. 50: 1031–1036.
  23. Scheinost, A. C., W. Sinowski, and K. Auerswald. Regionalization of soil water retention curves in a highly variable soil scape, I. Developing a new pedotransfer function. Geoderma. 78: 129-143.
  24. Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Leoppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johnston, and M. E. Sumner. 1996. Methods of soil analysis. Soil Sci. Soc. Am. Madison, Wisconsin, USA.
  25. Tomasella, J., Ya. Pachepsky, S. Crestana, and W. J. Rawls. 2003. Comparison of two techniques to develop pedotransfer functions for water retention. Soil Sci. Soc. Am. J. 67: 1085-1092.
  26. van Alphen, B. J., H. W. G. Booltink, and J. Bouma. 2001. Combining pedotransfer functions with physical measurement to improve the estimation of soil hydraulic properties. Geoderma. 103: 133-147.
  27. van Genuchten, M. Th. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898.
  28. van Genuchten, M. Th., F. J. Leij, and S. R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2-91/065, US Salinity laboratory, USDA-ARS, Riverside, CA.
  29. Vereecken,, J. Diels, J. van Orshoven, J. Feyen, and J. Bouma. 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56: 1371-1378.
  30. Vereecken, H., J. Maes, J. Feyen, and P. Darius. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci. 148: 389-403.
  31. Visser, W. C. 1969. The relation between lithological properties the shape of desorption curve. p. 305-311. In Water in unsaturated zone. Proc. of UNESCO/IASH symposium. Wageningen, Netherlands.
  32. Wagner, B., V. R. Tarnawski, V. Hennings, U. Muller, G. Wessolek, and R. Plagge. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma. 102: 275–297.
  33. Wosten, J. H. M., A. Lilly, A. Nemes, and C. Le Bas. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90:169–185.
  34. Zacharias, S., and G. Wessolek. 2007. Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Sci. Soc. Am. J. 71: 43–50.