مروری بر عملکرد تریبولوژیکی کاشتنی‌ها و قطعه‌های فلزی مورد استفاده در بدن و راه‌کارهای بهبود مقاومت به سایش آن‌ها با استفاده از روش‌های پوشش‌دهی

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران.

2 استادیار، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران.

3 استاد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران.

چکیده

آلیاژهای فلزی به دلیل دارا بودن خواص مکانیکی مناسب، کاربردهای گسترده­ای به‌عنوان کاشتنی و ابزارهای مورد استفاده در بدن دارند. این آلیاژها در کاربردهایی چون ترمیم و تعویض مفاصل اسکلتی انسان، دندان پزشکی، دستگاه­های قلبی و عروقی و جراحی استفاده می‌شوند. شرایط کاری این قطعه­ها و محیط بدن موجب می­شود این کاشتنی­ها در معرض انواع مختلف سایش قرار گیرند. سایش یکی از عوامل اصلی کنترل‌کننده عمر کاشتنی و قطعه­های فلزی مورد استفاده در بدن است و بسیاری از آن­ها به‌دلیل پدیده­های سایشی پس از مدتی توانایی عملکرد مناسب خود را از دست می­دهند. به‌علاوه، ذرات تولیدشده در اثر سایش می­توانند موجب التهاب و سست شدن فصل مشترک بین کاشتنی و بافت میزبان شوند. در مقاله حاضر، انواع آلیاژهای فلزی مورد استفاده به‌عنوان کاشتنی و ابزارهای مورد استفاده در بدن و سازوکارهای سایشی که با آن­ها مواجه هستند، مورد بررسی قرار گرفته است. در ادامه، روش­های پوشش­دهی که می­توانند به­منظور افزایش مقاومت به سایش قطعه­ها و کاشتنی­ها مورد استفاده قرار بگیرند، بررسی شده و مزیت­ها و عیب­های هر یک بیان شده است. با توجه به در دسترس نبودن مطالعه جامع در این حوزه به زبان فارسی، این مقاله می‌تواند مورد استفاده پژوهشگران و فعالان حوزه‌های ایمپلنت‌ها، بیوتریبولوژی و برهم‌کنش بین کاشتنی‌ها و بدن قرار بگیرد.

کلیدواژه‌ها


عنوان مقاله [English]

A review of tribological performance of implants and metallic objects used in the body and the coating techniques employed to improve their wear resistance

نویسندگان [English]

  • Razieh Chaharmahali 1
  • Meisam Nouri 2
  • Arash Fattah-alhosseini 3
1 M.Sc., Department of materials engineering, Faculty of engineering, Bu-Ali Sina University, Hamedan, Iran.
2 Assistant Professor, Department of materials engineering, Faculty of engineering, Bu-Ali Sina University, Hamedan, Iran.
3 Professor, Department of materials engineering, Faculty of engineering, Bu-Ali Sina University, Hamedan, Iran.
چکیده [English]

Metallic alloys are utilized widely as implants and bio-tools due to their prominent mechanical properties. They can be used as endoprostheses, dental implants, cardiovascular devices parts, and surgery tools. The working conditions and the environmental characteristics of the body cause the implants to be exposed to various types of wear. Abrasion is a critical factor in controlling the life cycle of the implant and the metallic parts used in the body and many of these objects fail to function properly due to abrasion phenomena. Moreover, the fine particles produced due to abrasion can actively produce inflammation and loosening at the interface between the implant and the host tissue. In this paper, various metallic alloys that are used as implants and the bio-tools and their corresponding wear mechanisms have been reviewed, comprehensively. Moreover, the coating techniques that enhance the tribological performance of the objects and implants have been studied and their advantages and disadvantages have been discussed.

کلیدواژه‌ها [English]

  • Metallic implants
  • Failure
  • Tribology
  • Wear
  • Coating
  1. Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys☆. Acta Biomater [Internet]. 2010 May;6(5):1824–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706109004437
  2. E SF, Shi L, Guo ZG, Liu WM. The recent progress of tribological biomaterials. Biosurface and Biotribology [Internet]. 2015 Jun;1(2):81–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405451815000318
  3. Evis Z, Webster TJ. Nanosize hydroxyapatite: doping with various ions. Adv Appl Ceram [Internet]. 2011 Jul 22;110(5):311–21. Available from: http://www.tandfonline.com/doi/full/10.1179/1743676110Y.0000000005
  4. Wang Q, Xue Q, Liu H, Shen W, Xu J. The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK. Wear [Internet]. 1996 Oct;198(1–2):216–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/0043164896072018
  5. Affatato S, Ruggiero A. Surface analysis on revised hip implants with stem taper for wear and failure incidence evaluation: A first investigation. Measurement [Internet]. 2019 Oct;145:38–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0263224119305470
  6. Ruggiero A, Merola M, Affatato S. On the biotribology of total knee replacement: a new roughness measurements protocol on in vivo condyles considering the dynamic loading from musculoskeletal multibody model. Measurement [Internet]. 2017 Dec;112:22–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0263224117305067
  7. Gang S, Fengzhou F, Chengwei K. Tribological Performance of Bioimplants: A Comprehensive Review. Nami Jishu yu Jingmi Gongcheng/Nanotechnology Precis Eng [Internet]. 2018;1(2):107–22. Available from: http://dx.doi.org/10.13494/j.npe.20180003
  8. Fu Y, Loh NL, Batchelor AW, Liu D, Xiaodong Zhu, He J, et al. Improvement in fretting wear and fatigue resistance of Ti–6Al–4V by application of several surface treatments and coatings. Surf Coatings Technol [Internet]. 1998 Aug;106(2–3):193–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0257897298005283
  9. Piscanec S. Bioactivity of TiN-coated titanium implants. Acta Mater [Internet]. 2004 Mar 8;52(5):1237–45. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359645403007055
  10. Fathyunes L, Khalil-Allafi J, Sheykholeslami SOR, Moosavifar M. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO 2 nanotubes by ultrasound-assisted pulse electrodeposition. Mater Sci Eng C [Internet]. 2018 Jun;87:10–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493117317496
  11. Jin S, Zhang Y, Wang Q, Zhang D, Zhang S. Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids Surfaces B Biointerfaces [Internet]. 2013 Jan;101:343–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776512003700
  12. Ching HA, Choudhury D, Nine MJ, Abu Osman NA. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci Technol Adv Mater [Internet]. 2014 Feb 13;15(1):014402. Available from: http://www.tandfonline.com/doi/full/10.1088/1468-6996/15/1/014402
  13. Mutlu I. Sinter-coating method for the production of TiN-coated titanium foam for biomedical implant applications. Surf Coatings Technol [Internet]. 2013 Oct;232:396–402. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0257897213004854
  14. Sun T, Xue N, Liu C, Wang C, He J. Bioactive (Si, O, N)/(Ti, O, N)/Ti composite coating on NiTi shape memory alloy for enhanced wear and corrosion performance. Appl Surf Sci [Internet]. 2015 Nov;356:599–609. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433215017523
  15. Wang G, Zreiqat H. Functional Coatings or Films for Hard-Tissue Applications. Materials (Basel) [Internet]. 2010 Jul 9;3(7):3994–4050. Available from: http://www.mdpi.com/1996-1944/3/7/3994
  16. Movassagh-Alanagh F, Abdollah-zadeh A, Aliofkhazraei M, Abedi M. Improving the wear and corrosion resistance of Ti–6Al–4V alloy by deposition of TiSiN nanocomposite coating with pulsed-DC PACVD. Wear [Internet]. 2017 Nov;390–391:93–103. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043164817305100
  17. Lotfi-khojasteh E, Sahebazamani M, Elmkhah H, Nouri M, Imantalab O, Fattah-alhosseini A. A study of the electrochemical and tribological properties of TiN/CrN nano-layer coating deposited on carburized-H13 hot-work steel by Arc-PVD technique. J Asian Ceram Soc [Internet]. 2021 Jan 2;9(1):270–82. Available from: https://www.tandfonline.com/doi/full/10.1080/21870764.2020.1863577
  18. Balasubramanian S, Ramadoss A, Kobayashi A, Muthirulandi J. Nanocomposite Ti-Si-N Coatings Deposited by Reactive dc Magnetron Sputtering for Biomedical Applications. Bandyopadhyay A, editor. J Am Ceram Soc [Internet]. 2012 Sep;95(9):2746–52. Available from: http://doi.wiley.com/10.1111/j.1551-2916.2011.05029.x
  19. Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Mater Res Part A [Internet]. 2009;9999A:NA-NA. Available from: http://doi.wiley.com/10.1002/jbm.a.32303
  20. Ismail RA, Salim ET, Hamoudi WK. Characterization of nanostructured hydroxyapatite prepared by Nd:YAG laser deposition. Mater Sci Eng C [Internet]. 2013 Jan;33(1):47–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493112003670
  21. Domínguez-Trujillo C, Peón E, Chicardi E, Pérez H, Rodríguez-Ortiz JA, Pavón JJ, et al. Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surf Coatings Technol [Internet]. 2018 Jan;333:158–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0257897217311209
  22. Fattah-alhosseini A, Chaharmahali R, Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. J Magnes Alloy [Internet]. 2020 May; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213956720300566
  23. Chaharmahali R, Fattah-alhosseini A, Babaei K. Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review. J Magnes Alloy [Internet]. 2020 Aug; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213956720301171
  24. Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Reports [Internet]. 2015 Jan;87:1–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927796X14001077
  25. Eynon-Lewis NJ, Ferry D, Pearse MF. Themistocles Gluck: an unrecognised genius. BMJ [Internet]. 1992 Dec 19;305(6868):1534–6. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.305.6868.1534
  26. Fokter S, editor. Recent Advances in Arthroplasty [Internet]. InTech; 2012. Available from: http://www.intechopen.com/books/recent-advances-in-arthroplasty
  27. Song E-K, Seon J-K, Moon J-Y, Ji- Y. The Evolution of Modern Total Knee Prostheses. In: Arthroplasty - Update [Internet]. InTech; 2013. Available from: http://www.intechopen.com/books/arthroplasty-update/the-evolution-of-modern-total-knee-prostheses
  28. Kunčická L, Kocich R, Lowe TC. Advances in metals and alloys for joint replacement. Prog Mater Sci. 2017;88:232–80.
  29. Muruve NGG, Cheng YF, Feng Y, Liu T, Muruve DA, Hassett DJ, et al. Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution. Mater Sci Eng C [Internet]. 2016 Nov;68:695–700. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493116306221
  30. Fonseca-García A, Pérez-Alvarez J, Barrera CC, Medina JC, Almaguer-Flores A, Sánchez RB, et al. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials. Mater Sci Eng C [Internet]. 2016 Sep;66:119–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493116303332
  31. Talha M, Behera CK, Sinha OP. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater Sci Eng C [Internet]. 2013 Oct;33(7):3563–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493113003615
  32. Ghosh S, Sanghavi S, Sancheti P. Metallic biomaterial for bone support and replacement. In: Fundamental Biomaterials: Metals [Internet]. Elsevier; 2018. p. 139–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081022054000064
  33. Casabán Julián L, Igual Muñoz A. Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behaviour in simulated body fluids. Tribol Int [Internet]. 2011 Mar;44(3):318–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301679X10002768
  34. Barucca G, Santecchia E, Majni G, Girardin E, Bassoli E, Denti L, et al. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering. Mater Sci Eng C [Internet]. 2015 Mar;48:263–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493114008078
  35. McGrory BJ, Ruterbories JM, Pawar VD, Thomas RK, Salehi AB. Comparison of Surface Characteristics of Retrieved Cobalt-Chromium Femoral Heads With and Without Ion Implantation. J Arthroplasty [Internet]. 2012 Jan;27(1):109–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0883540311001070
  36. Verma RP. Titanium based biomaterial for bone implants: A mini review. Mater Today Proc [Internet]. 2020;26:3148–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785320314048
  37. Sidhu SS, Singh H, Gepreel MA-H. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater Sci Eng C [Internet]. 2021 Feb;121:111661. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493120335797
  38. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C [Internet]. 2019 Sep;102:844–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493118338232
  39. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res [Internet]. 2001;58(2):180–7. Available from: https://onlinelibrary.wiley.com/doi/10.1002/1097-4636(2001)58:2%3C180::AID-JBM1005%3E3.0.CO;2-5
  40. Bayer BC, Hofmann S, Castellarin-Cudia C, Blume R, Baehtz C, Esconjauregui S, et al. Support−Catalyst−Gas Interactions during Carbon Nanotube Growth on Metallic Ta Films. J Phys Chem C [Internet]. 2011 Mar 24;115(11):4359–69. Available from: https://pubs.acs.org/doi/10.1021/jp102986f
  41. Findlay DM, Welldon K, Atkins GJ, Howie DW, Zannettino AC., Bobyn D. The proliferation and phenotypic expression of human osteoblasts on tantalum metal. Biomaterials [Internet]. 2004 May;25(12):2215–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961203007397
  42. Balagna C, Faga MG, Spriano S. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement. Mater Sci Eng C [Internet]. 2012 May;32(4):887–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493112000598
  43. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials [Internet]. 2006 Sep;27(27):4671–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014296120600439X
  44. Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, et al. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C [Internet]. 2013 Jul;33(5):2499–507. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493113000866
  45. Li C, Zhan Y, Jiang W. Zr–Si biomaterials with high strength and low elastic modulus. Mater Des [Internet]. 2011 Sep;32(8–9):4598–602. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306911002470
  46. Kondo R, Nomura N, Suyalatu, Tsutsumi Y, Doi H, Hanawa T. Microstructure and mechanical properties of as-cast Zr–Nb alloys. Acta Biomater [Internet]. 2011 Dec;7(12):4278–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706111003291
  47. Hua N, Huang L, Wang J, Cao Y, He W, Pang S, et al. Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study. J Non Cryst Solids [Internet]. 2012 Jul;358(12–13):1599–604. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022309312002359
  48. Waizy H, Seitz J-M, Reifenrath J, Weizbauer A, Bach F-W, Meyer-Lindenberg A, et al. Biodegradable magnesium implants for orthopedic applications. J Mater Sci [Internet]. 2013 Jan 24;48(1):39–50. Available from: http://link.springer.com/10.1007/s10853-012-6572-2
  49. Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. J Alloys Compd [Internet]. 2019 Jul;792:1162–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925838819313465
  50. Zhou H, Liang B, Jiang H, Deng Z, Yu K. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. J Magnes Alloy [Internet]. 2021 May;9(3):779–804. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213956721000578
  51. Luque-Agudo V, Fernández-Calderón MC, Pacha-Olivenza MA, Pérez-Giraldo C, Gallardo-Moreno AM, González-Martín ML. The role of magnesium in biomaterials related infections. Colloids Surfaces B Biointerfaces [Internet]. 2020 Jul;191:110996. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776520302265
  52. R V, G S, Velusamy R, Ramakrishna S. An in-vitro evaluation study on the effects of surface modification via physical vapor deposition on the degradation rates of magnesium-based biomaterials. Surf Coatings Technol [Internet]. 2021 Apr;411:126972. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0257897221001456
  53. Molaei M, Babaei K, Fattah-alhosseini A. Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review. J Magnes Alloy [Internet]. 2020 Dec; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213956720302462
  54. Nouri M. The Effect of Yttrium on Wear, Corrosion and Corrosive Wear of Mg-Al Alloys. Occup Med (Chic Ill). 2017;53(4):130.
  55. Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res Part A [Internet]. 2007 Dec 1;83A(3):703–11. Available from: http://doi.wiley.com/10.1002/jbm.a.31273
  56. Pietak A, Mahoney P, Dias GJ, Staiger MP. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med [Internet]. 2008 Jan 3;19(1):407–15. Available from: http://link.springer.com/10.1007/s10856-007-3172-9
  57. Nouri M, Li DY. Maximizing the benefit of aluminizing to AZ31 alloy by surface nanocrystallization for elevated resistance to wear and corrosive wear. Tribol Int [Internet]. 2017 Jul;111:211–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301679X17301263
  58. Matsushita T, Takahashi H. Orthopedic applications of metallic biomaterials [Internet]. 2nd ed. Metals for Biomedical Devices. Elsevier Ltd.; 2019. 431–473 p. Available from: http://dx.doi.org/10.1016/B978-0-08-102666-3.00017-1
  59. Bachtar F, Chen X, Hisada T. Finite element contact analysis of the hip joint. Med Biol Eng Comput [Internet]. 2006 Aug 6;44(8):643–51. Available from: http://link.springer.com/10.1007/s11517-006-0074-9
  60. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech [Internet]. 2010 Aug;43(11):2164–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021929010002095
  61. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci [Internet]. 2009 May;54(3):397–425. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079642508001126
  62. Zhou ZR, Jin ZM. Biotribology: Recent progresses and future perspectives. Biosurface and Biotribology [Internet]. 2015 Mar;1(1):3–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405451815000082
  63. Gebeshuber IC. Biotribology inspires new technologies. Nano Today [Internet]. 2007 Oct;2(5):30–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S174801320770141X
  64. Fischer A, Weiß S, Wimmer MA. The tribological difference between biomedical steels and CoCrMo-alloys. J Mech Behav Biomed Mater [Internet]. 2012 May;9:50–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1751616112000276
  65. Pinchuk. Tribology and Biophysics of Artificial Joints. 2005. 375 p.
  66. Ko PL. Metallic wear — a review with special references to vibration-induced wear in power plant components. Tribol Int [Internet]. 1987 Apr;20(2):66–78. Available from: https://linkinghub.elsevier.com/retrieve/pii/0301679X87900922
  67. Sawano H, Warisawa S, Ishihara S. Study on long life of artificial joints by investigating optimal sliding surface geometry for improvement in wear resistance. Precis Eng [Internet]. 2009 Oct;33(4):492–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141635909000439
  68. Santavirta SS, Lappalainen R, Pekko P, Anttila A, Konttinen YT. The counterface, surface smoothness, tolerances, and coatings in total joint prostheses. Clin Orthop Relat Res. 1999;(369):92–102.
  69. Molinari J-F, Aghababaei R, Brink T, Frérot L, Milanese E. Adhesive wear mechanisms uncovered by atomistic simulations. Friction [Internet]. 2018 Sep 6;6(3):245–59. Available from: http://link.springer.com/10.1007/s40544-018-0234-6
  70. Harman MK, Banks SA, Andrew Hodge W. Wear analysis of a retrieved hip implant with titanium nitride coating. J Arthroplasty. 1997;12(8):938–45.
  71. WANG Q liang, GE S rong. Comparison of Biotribology of Swine Compact Bone Against UHMWPE. J China Univ Min Technol. 2007;17(1):133–7.
  72. Stewart TD. Tribology of artificial joints. Orthop Trauma [Internet]. 2010 Dec;24(6):435–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877132710001004
  73. Wang YQ, Huang LP, Liu WL, Li J. The blast erosion behaviour of ultrahigh molecular weight polyethylene. Wear [Internet]. 1998 Jun;218(1):128–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043164897002895
  74. Tewari U., Harsha A., Häger A., Friedrich K. Solid particle erosion of carbon fibre– and glass fibre–epoxy composites. Compos Sci Technol [Internet]. 2003 Feb;63(3–4):549–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353802002105
  75. Sinnett-Jones PE, Wharton JA, Wood RJK. Micro-abrasion–corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear [Internet]. 2005 Jul;259(7–12):898–909. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043164805001328
  76. Nouri M, Sun X, Li DY. Beneficial effects of yttrium on the performance of Mg–3%Al alloy during wear, corrosion and corrosive wear. Tribol Int [Internet]. 2013 Nov;67:154–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301679X13002739
  77. Sun X, Nouri M, Wang Y, Li DY. Corrosive wear resistance of Mg–Al–Zn alloys with alloyed yttrium. Wear [Internet]. 2013 Apr;302(1–2):1624–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043164813000239
  78. Ansari F, Ries MD, Pruitt L. Effect of processing, sterilization and crosslinking on UHMWPE fatigue fracture and fatigue wear mechanisms in joint arthroplasty. J Mech Behav Biomed Mater [Internet]. 2016 Jan;53:329–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1751616115003069
  79. Liu F, Fisher J, Jin Z. Wear prediction of orthopaedic implants. In: Wear of Orthopaedic Implants and Artificial Joints [Internet]. Elsevier; 2013. p. 403–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780857091284500157
  80. Jin ZM, Zheng J, Li W, Zhou ZR. Tribology of medical devices. Biosurface and Biotribology. 2016;2(4):173–92.
  81. Jin Z, Fisher J. Tribology in joint replacement*Note: This chapter is an updated version of Chapter 2, from the first edition of Joint replacement technology, edited by P. A. Revell and published by Woodhead Publishing, 2008*. In: Joint Replacement Technology [Internet]. Elsevier; 2014. p. 31–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780857098412500023
  82. Bauer TW, Campbell PA, Hallerberg G. How Have New Bearing Surfaces Altered the Local Biological Reactions to Byproducts of Wear and Modularity? Clin Orthop Relat Res [Internet]. 2014 Dec 31;472(12):3687–98. Available from: http://link.springer.com/10.1007/s11999-014-3817-1
  83. Abdelgaied A, Brockett CL, Liu F, Jennings LM, Jin Z, Fisher J. The effect of insert conformity and material on total knee replacement wear. Proc Inst Mech Eng Part H J Eng Med [Internet]. 2014 Jan 2;228(1):98–106. Available from: http://journals.sagepub.com/doi/10.1177/0954411913513251
  84. Zhou ZR, Zheng J. Tribology of dental materials: A review. J Phys D Appl Phys. 2008;41(11).
  85. Hooper SM, Newcombe RG, Faller R, Eversole S, Addy M, West NX. The protective effects of toothpaste against erosion by orange juice: Studies in situ and in vitro. J Dent [Internet]. 2007 Jun;35(6):476–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300571207000152
  86. Mair LH, Stolarski TA, Vowles RW, Lloyd CH. Wear: mechanisms, manifestations and measurement. Report of a workshop. J Dent [Internet]. 1996 Jan;24(1–2):141–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/0300571295000437
  87. Willems G, Clocheret K, Celis J-P, Verbeke G, Chatzicharalampous E, Carels C. Frictional behavior of stainless steel bracket-wire combinations subjected to small oscillating displacements. Am J Orthod Dentofac Orthop [Internet]. 2001 Oct;120(4):371–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889540601072651
  88. Kluemper GT, Hiser DG, Rayens MK, Jay MJ. Efficacy of a wax containing benzocaine in the relief of oral mucosal pain caused by orthodontic appliances. Am J Orthod Dentofac Orthop [Internet]. 2002 Oct;122(4):359–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889540602000860
  89. Heintze SD, Rousson V. Clinical effectiveness of direct class II restorations - a meta-analysis. J Adhes Dent [Internet]. 2012;14(5):407–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23082310
  90. Jennings DL, Weeks PA. Thrombosis in Continuous-Flow Left Ventricular Assist Devices: Pathophysiology, Prevention, and Pharmacologic Management. Pharmacother J Hum Pharmacol Drug Ther [Internet]. 2015 Jan;35(1):79–98. Available from: http://doi.wiley.com/10.1002/phar.1501
  91. Xie D, Leng YX, Jing FJ, Huang N. A brief review of bio-tribology in cardiovascular devices. Biosurface and Biotribology [Internet]. 2015;1(4):249–62. Available from: http://dx.doi.org/10.1016/j.bsbt.2015.11.002
  92. Leng YX, Chen JY, Yang P, Wang J, Zhao AS, Wan GJ, et al. The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve. Surf Coatings Technol. 2006;201(3–4):1012–6.
  93. Kapnisis KK, Halwani DO, Brott BC, Anderson PG, Lemons JE, Anayiotos AS. Stent overlapping and geometric curvature influence the structural integrity and surface characteristics of coronary nitinol stents. J Mech Behav Biomed Mater [Internet]. 2013;20:227–36. Available from: http://dx.doi.org/10.1016/j.jmbbm.2012.11.006
  94. Zhao DF, Seco M, Wu JJ, Edelman JB, Wilson MK, Vallely MP, et al. Mechanical Versus Bioprosthetic Aortic Valve Replacement in Middle-Aged Adults: A Systematic Review and Meta-Analysis. Ann Thorac Surg [Internet]. 2016 Jul;102(1):315–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003497515017646
  95. Ielasi A, Anzuini A. Guide-catheter extension system facilitated multiple bioresorbable vascular scaffolds (ABSORB®) delivery in a very long and resistant coronary artery lesion. Cardiovasc Revascularization Med [Internet]. 2014 Mar;15(2):117–20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S155383891300122X
  96. Wan P, Ren Y, Zhang B, Yang K. Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial. Mater Sci Eng C [Internet]. 2010 Oct;30(8):1183–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493110001505
  97. Manam NS, Harun WSW, Shri DNA, Ghani SAC, Kurniawan T, Ismail MH, et al. Study of corrosion in biocompatible metals for implants: A review. J Alloys Compd [Internet]. 2017 Apr;701:698–715. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092583881730230X
  98. Roy S. Functionally graded coatings on biomaterials: a critical review. Mater Today Chem [Internet]. 2020 Dec;18:100375. Available from: https://linkinghub.elsevier.com/retrieve/pii/S246851942030135X
  99. Harun WSW, Asri RIM, Alias J, Zulkifli FH, Kadirgama K, Ghani SAC, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram Int [Internet]. 2018 Feb;44(2):1250–68. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0272884217323635
  100. Chaharmahali R, Fattah-alhosseini A, Esfahani H. Increasing the in-vitro corrosion resistance of AZ31B-Mg alloy via coating with hydroxyapatite using plasma electrolytic oxidation. J Asian Ceram Soc [Internet]. 2020;8(1):39–49. Available from: https://doi.org/10.1080/21870764.2019.1698143
  101. Chaharmahali R, k. Babaei, A. Fattah-alhosseini. Corrosion Behavior of Calcium-Phosphorus Coatings on AZ31B Mg Alloy by Plasma Electrolytic Oxidation in Hank’s Balanced Salt Solution. Anal Bioanal Electrochem. 2019;11(6):703–14.
  102. Wisbey A, Gregson PJ, Tuke M. Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials [Internet]. 1987 Nov;8(6):477–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/0142961287900858
  103. V.V. AT, Bendavid A, Martin PJ, Vaithilingam V, Bean PA, Evans MDM, et al. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys. Colloids Surfaces B Biointerfaces [Internet]. 2017 Jul;155:1–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776517301571
  104. Affatato S, Ruggiero A, Merola M. Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos Part B Eng [Internet]. 2015 Dec;83:276–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836815004473
  105. Balagna C, Faga MG, Spriano S. Tribological behavior of a Ta-based coating on a Co–Cr–Mo alloy. Surf Coatings Technol [Internet]. 2014 Nov;258:1159–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S025789721400588X
  106. Liao TT, Deng QY, Wu BJ, Li SS, Li X, Wu J, et al. Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints. Biomed Mater [Internet]. 2017 Jan 24;12(1):015018. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aa52ca
  107. Berni M, Lopomo N, Marchiori G, Gambardella A, Boi M, Bianchi M, et al. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications. Mater Sci Eng C [Internet]. 2016 May;62:643–55. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493116301084
  108. James DH. A review of experimental findings in surface preparation for thermal spraying. J Mech Work Technol [Internet]. 1984 Jul;10(2):221–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/037838048490069X
  109. Uwais ZA, Hussein MA, Samad MA, Al-Aqeeli N. Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review. Arab J Sci Eng [Internet]. 2017 Nov 12;42(11):4493–512. Available from: http://link.springer.com/10.1007/s13369-017-2624-x
  110. Qiu Z-Y, Chen C, Wang X-M, Lee I-S. Advances in the surface modification techniques of bone-related implants for last 10 years. Regen Biomater [Internet]. 2014 Nov 1;1(1):67–79. Available from: https://academic.oup.com/rb/article-lookup/doi/10.1093/rb/rbu007