تأثیر روش ساخت بر ریزساختار و خواص مکانیکی داربست های کامپوزیتی کلسیم فسفات/ ژلاتین- نشاسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار/ دانشکده مهندسی دانشگاه فردوسی مشهد گروه مهندسی متالورژی و مواد

3 استادیار، گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

4 گروه فارماکولوژی و سم شناسی، دانشکده داروسازی، دانشگاه علوم پزشکی مشهد، ایران

چکیده

وقوع آسیب های استخوانی مانند شکستگی های بزرگ استخوان در اثر عوامل متعدّد غیرقابل انکار است. در این موارد به داربستی نیاز است تا به کمک آن، منطقه آسیب دیده ترمیم شود. هدف از این پژوهش، ساخت و بررسی خواص مکانیکی داربست های کلسیم فسفات/ ژلاتین- نشاسته است. بدین منظور پس از سنتز ذرّات کلسیم فسفات به روش سل ژل، از سه روش مختلف برای ساخت داربست کامپوزیتی کلسیم فسفات-ژلاتین استفاده شد. درنهایت روشی که دارای ریزساختار کاملاً متخلخل و مطلوب بود، به عنوان روش بهینه جهت ساخت داربست های کلسیم فسفات/ ژلاتین- نشاسته انتخاب گردید. در ساخت کامپوزیت ها از 4 درصد وزنی مختلف نشاسته در محلول ژلاتین استفاده و تأثیر پوشش ژلاتینی دارای اتّصالات عرضی با گلوتارآلدهید نیز بررسی گردید. طبق نتایج حاصل از آزمون مکانیکی، نمونه حاوی 60درصد ژلاتین و 40درصد نشاسته، دارای استحکام خمشی بهینه بوده که مقدار آن، 2.3 مگاپاسکال برای نمونه بدون پوشش و 4.5 مگاپاسکال مربوط به نمونه دارای پوشش است. همچنین نتایج حاصل از تصویربرداری با میکروسکوپ الکترونی روبشی(SEM)، وجود شبکه کاملاً متخلخل با حفرات به هم پیوسته را در سطح نمونه های پوشش داده شده و حضور تخلخل های موضعی در ساختار متراکم را در قسمت های داخلی آن نشان می دهد.نتایج کشت سلولهای بنیادی پالپ دندان عقل نیز زیست سازگاری و وجود قابلیت چسبندگی و تکثیر سلولهای بنیادی برروی داربست را اثبات میکند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Manufacturing Route on Microstructure and Mechanical Properties of Calcium Phosphate/Gelatin-Starch Composite Scaffold

نویسندگان [English]

  • Faezeh Darvishian Haghighi 1
  • Sahar Mollazadeh Beidokhti 2
  • Samaneh Sahebian Saghi 3
  • Zahra Tayarani Najaran 4
1 Department of Materials and Metallurgy engineering, Faculty of engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Assistant Professor, Department of Materials and Metallurgy engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
3 Assistant Professor, Department of Materials and Metallurgy engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
4 Department of Pharmacodynamics and Toxicology, Mashhad University of Medical Sciences, Iran
چکیده [English]

There are plenty of bone damages due to different reasons these days. In order to heal of damaged area, utilizing of the scaffold is necessary. The main aim of this research is fabrication and investigation of Calcium Phosphate/Gelatin-Starch composite scaffolds. After synthesizing the Calcium Phosphate particles via sol gel route, three different methods were used to manufacture Calcium Phosphate/ Gelatin scaffolds. The method which has the porous structure was selected as the main method for fabricating Calcium Phosphate/ Gelatin-Starch scaffolds. Weight percentage ofstarch and applying the Gelatin-Glutaraldehyde coating were chosen as two variations. According to mechanical properties results, the sample with 60 weight percentage of Gelatin and 40 weight percentage of Starch has the highest final flexural strength which are 4.5 and 2.3 MPa for samples with and without Gelatin-Glutaraldehyde coating respectively. The SEM results show the completely porous structure with interconnected pores on the surface of coated samples and some local pores in internal parts of the scaffolds.According to the result of cell culture, these scaffolds provide surfaces that facilitate the response of stem cells related to attachment, survival, and proliferation.

کلیدواژه‌ها [English]

  • Scaffold
  • Gelatin
  • Starch
  • Calcium Phosphate Particles
  • flexural Strength
[1]      D. Iannazzo, A. Pistone, M. Salamò, S. Galvagno, Hybrid ceramic/polymer composites for bone tissue regeneration, 2017. doi:10.1016/B978-0-08-100789-1.00006-X.
[2]      L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for Bone Tissue Engineering: State of the art and new perspectives, Mater. Sci. Eng. C. 78 (2017) 1246–1262. doi:10.1016/j.msec.2017.05.017.
[3]      M. Meskinfam, Polymer scaffolds for bone regeneration, Elsevier Ltd., 2017. doi:10.1016/B978-0-08-100737-2.00017-0.
[4]      S. Wu, X. Liu, K.W.K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Reports. 80 (2014) 1–36. doi:10.1016/j.mser.2014.04.001.
[5]      M.J. Woźniak, A. Chlanda, P. Oberbek, M. Heljak, K. Czarnecka, M. Janeta, Ł. John, Binary Bioactive Glass Composite Scaffolds for Bone Tissue Engineering – Structure and Mechanical Properties in Micro and Nano Scale. A preliminary study, 2018. doi:10.1016/j.micron.2018.12.006.
[6]      R. Langer, J.P. Vacanti, N. Series, N. May, P oly tr au ma 1/2006, 260 (2006) 1–102. doi:10.1126/science.8493529.
[7]      A. Vats, N.S. Tolley, J.M. Polak, J.E. Gough, Scaffolds and biomaterials for tissue engineering: A review of clinical applications, Clin. Otolaryngol. Allied Sci. 28 (2003) 165–172. doi:10.1046/j.1365-2273.2003.00686.x.
[8]      M. Varkey, S.A. Gittens, H. Uludag, Growth factor delivery for bone tissue repair: an update, Expert Opin Drug Deliv. 1 (2004) 19–36. doi:10.1517/17425247.1.1.19.
[9]      R.Z. Legeros, J.P. Legeros, Hydroxyapatite, Bioceram. Their Clin. Appl. (2008) 367–394. doi:10.1533/9781845694227.2.367.
[10]    C. Koski, B. Onuike, A. Bandyopadhyay, S. Bose, Starch-hydroxyapatite composite bone scaffold fabrication utilizing a slurry extrusion-based solid freeform fabricator, Addit. Manuf. 24 (2018) 47–59. doi:10.1016/j.addma.2018.08.030.
[11]    Y.Z. Shi, J. Liu, L. Yu, L.Z. Zhong, H.B. Jiang, β-TCP scaffold coated with PCL as biodegradable materials for dental applications, Ceram. Int. 44 (2018) 15086–15091. doi:10.1016/j.ceramint.2018.05.142.
[12]    G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials. 25 (2004) 4749–4757. doi:10.1016/j.biomaterials.2003.12.005.
[13]    Z. Xiong, Y. Yan, S. Wang, R. Zhang, C. Zhang, Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition, Scr. Mater. 46 (2002) 771–776. doi:10.1016/S1359-6462(02)00071-4.
[14]    S. Kuttappan, D. Mathew, M.B. Nair, Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review, Int. J. Biol. Macromol. 93 (2016) 1390–1401. doi:10.1016/j.ijbiomac.2016.06.043.
[15]    I.R. Serra, R. Fradique, M.C.S. Vallejo, T.R. Correia, S.P. Miguel, I.J. Correia, Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration, Mater. Sci. Eng. C. 55 (2015) 592–604. doi:10.1016/j.msec.2015.05.072.
[16]    P.X. Ma, R. Langer, Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering, Polym. Med. Pharm. 394 (1995) 99–104. doi:doi:10.1557/PROC-394-99.
[17]    L.L. Hench, H.A. Paschall, Direct chemical bond of bioactive glass‐ceramic materials to bone and muscle, J. Biomed. Mater. Res. 7 (1973) 25–42. doi:10.1002/jbm.820070304.
[18]    Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials, 2 (n.d.).
[19]    I.K. Kang, Y. Ito, Y. Imanishi, M. Sisido, Synthesis, antithrombogenicity and gas permeability of copolypeptides having silyl groups or dimethylsiloxane oligomers substituted in the side chains, Int. J. Biol. Macromol. 10 (1988) 169–177. doi:10.1016/0141-8130(88)90044-X.
[20]    S. Dasgupta, K. Maji, S.K. Nandi, Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo, Mater. Sci. Eng. C. 94 (2019) 713–728. doi:10.1016/j.msec.2018.10.022.
[21]    J. Sundaram, T.D. Durance, R. Wang, Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying, Acta Biomater. 4 (2008) 932–942. doi:10.1016/j.actbio.2008.01.019.
[22]    S. Tabasum, M. Younas, M.A. Zaeem, I. Majeed, M. Majeed, A. Noreen, M.N. Iqbal, K.M. Zia, A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling, Int. J. Biol. Macromol. 122 (2019) 969–996. doi:10.1016/j.ijbiomac.2018.10.092.
[23]    A. Duconseille, T. Astruc, N. Quintana, F. Meersman, V. Sante-Lhoutellier, Gelatin structure and composition linked to hard capsule dissolution: A review, Food Hydrocoll. 43 (2015) 360–376. doi:10.1016/j.foodhyd.2014.06.006.
[24]    تاثیر روش ساخت بر ریزساختار و رفتار تبلور شیشه های زیست فعال SiO2-CaO-P2O5, in: 2016.
[25]    C.J. Brinker,I. Introduction, Hydrolysis and Condensation of Silicates: Effects of Structure, (2) (3) 1.1., 100 (1988) 31–50.
[26]    L. Eindhoven, NON-CRYSTALLINE SOLIDS Hydrolysis-condensation mechanism of a two-step sol-gel process of mixtures of TEOS and T E O G, 148 (1992) 13–17.
[27]    L. Desogus, A. Cuccu, S. Montinaro, R. Orrù, G. Cao, D. Bellucci, A. Sola, V. Cannillo, Classical Bioglass® and innovative CaO-rich bioglass powders processed by Spark Plasma Sintering: A comparative study, J. Eur. Ceram. Soc. 35 (2015) 4277–4285. doi:10.1016/j.jeurceramsoc.2015.07.023.
[28]    W.T. Lin, J.C. Chen, Y.C. Hsiao, C.J. Shih, Re-crystallization of silica-based calcium phosphate glass prepared by sol–gel technique, Ceram. Int. 43 (2017) 13388–13393. doi:10.1016/j.ceramint.2017.07.041.
[29]    N. Jmal, J. Bouaziz, Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method, Mater. Sci. Eng. C. 71 (2017) 279–288. doi:10.1016/j.msec.2016.09.058.
[30]    L.A. Quintero Sierra, D.M. Escobar, Characterization and bioactivity behavior of sol-gel derived bioactive vitroceramic from non-conventional precursors, Bol. La Soc. Esp. Ceram. y Vidr. 58 (2019) 85–92. doi:10.1016/j.bsecv.2018.07.003.
[31]    B. Li, W. Luo, Y. Wang, H. Wu, C. Zhang, Bioactive SiO2-CaO-P2O5hollow nanospheres for drug delivery, J. Non. Cryst. Solids. 447 (2016) 98–103. doi:10.1016/j.jnoncrysol.2016.05.041.
[32]    A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, Ceram. Int. 44 (2018) 9422–9432. doi:10.1016/j.ceramint.2018.02.159.
[33]    D. Avram, D. Ungureanu, N. Angelescu, J. Barroso de Aguiar, A Comparative Study on the Properties of Potentially Bioactive Glasses Obtained by Sol-Gel Technique and by Melting Mixtures of Oxides, Sci. Bull. Valahia Univ. - Mater. Mech. 15 (2017) 18–24. doi:10.1515/bsmm-2017-0013.
[34]    A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, Synthesis , characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass, Mater. Sci. Eng. C. 29 (2009) 335–340. doi:10.1016/j.msec.2008.07.004.
[35]    L. Karim, A.I. Hussein, E.F. Morgan, M.L. Bouxsein, The Mechanical Behavior of Bone, Fourth Edition, Elsevier, 2013. doi:10.1016/B978-0-12-415853-5.00019-4.
[36]    X. Wang, X. Shen, X. Li, C.M. Agrawal, Age-related Changes in the Collagen Network and Toughness of Bone, 31 (2002) 1–7.
[37]    H. Ridha, P.J. Thurner, Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests, J. Mech. Behav. Biomed. Mater. 27 (2013) 94–106. doi:10.1016/j.jmbbm.2013.07.005.
[38]    N. Subhapradha, M. Abudhahir, A. Aathira, N. Srinivasan, A. Moorthi, Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering, Int. J. Biol. Macromol. 110 (2018) 65–73. doi:10.1016/j.ijbiomac.2017.11.146.
[39]    L. Stipniece, I. Narkevica, M. Sokolova, J. Locs, J. Ozolins, Novel scaffolds based on hydroxyapatite/poly(vinyl alcohol) nanocomposite coated porous TiO2 ceramics for bone tissue engineering, Ceram. Int. 42 (2016) 1530–1537. doi:10.1016/j.ceramint.2015.09.101.
[40]    A. Podshivalov, M. Zakharova, E. Glazacheva, M. Uspenskaya, Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties, Carbohydr. Polym. 157 (2017) 1162–1172. doi:10.1016/j.carbpol.2016.10.079.
[41]    D. Mao, Q. Li, N. Bai, H. Dong, D. Li, Porous stable poly ( lactic acid )/ ethyl cellulose / hydroxyapatite composite sca ff olds prepared by a combined method for bone regeneration, Carbohydr. Polym. 180 (2018) 104–111. doi:10.1016/j.carbpol.2017.10.031.