تأثیر نانوذرات دی اکسید تیتانیوم بر خصوصیات رشدی و جذب عناصر غذایی همیشه‌بهار تحت تنش کلرید سدیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم باغبانی، دانشگاه آزاد واحد شیروان، شیروان، ایران.

2 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 استادیار گروه علوم باغبانی، دانشگاه آزاد اسلامی واحد شیروان، شیروان، ایران.

چکیده

به­منظور بررسی اثر نانو ذرات دی اکسید تیتانیوم بر خصوصیات مورفولوژیکی و میزان جذب برخی عناصر غذایی گیاه همیشه‌بهار تحت تنش شوری ناشی از کلرید سدیم، آزمایش گلدانی به­صورت فاکتوریل بر پایه طرح کاملاً تصادفی با 2 فاکتور و در 3 تکرار در گلخانه تحقیقاتی دانشگاه فردوسی مشهد در سال 1398 انجام شد. فاکتور اول تنش شوری به­صورت آب آبیاری در چهار سطح (0، 30، 60 و 90 میلی­مولار کلرید سدیم) و فاکتور دوم برگپاشی به­صورت عدم کاربرد و کاربرد نانو ذرات دی اکسید تیتانیوم در سه سطح (50، 100 و 200 میلی­گرم بر لیتر( بود. صفات مورد مطالعه شامل خصوصیات مورفولوژیکی و غلظت عناصر غذایی شامل نیتروژن، فسفر، پتاسیم، منیزیم، منگنز، کلسیم، روی، آهن، سدیم و تیتانیوم بودند. نتایج حاصل از تجزیه واریانس داده‏ها نشان داد که اثرات متقابل شوری و دی اکسید تیتانیوم بر صفات مورفولوژیکی و غلظت عناصر برگ در سطح احتمال پنج درصد معنی­دار شد. با افزایش شوری، خصوصیات مورفولوژیکی کاهش یافت و کاربرد نانو ذرات دی اکسید تیتانیوم سبب بهبود این صفات شدند. برگپاشی با غلظت 200 میلی­گرم بر لیتر دی اکسید تیتانیوم در بالاترین سطح شوری (90 میلی­مولار) به­ترتیب سبب افزایش 6/1، 1/2، 2/2، 2/2 و 4/4 برابری تعداد شاخه­فرعی، وزن تر بوته، وزن خشک و تر گل و تعداد شاخه گل­دهنده نسبت به عدم کاربرد دی اکسید تیتانیوم در این سطح شوری گردید. کاربرد سطوح مختلف دی اکسید تیتانیوم سبب تغییر خصوصیات مورفولوژیکی و غلظت عناصر غذایی مورد مطالعه تحت سطوح مختلف شوری گردید که این امر به­علت افزایش میزان جذب نور، میزان کلروفیل و سرعت فتوسنتز و تحریک جذب برخی عناصر به کمک تیتانیوم می­باشد. نتایج این آزمایش نشان داد که برگپاشی تیتانیوم به­­ویژه در بالاترین غلظت (200 میلی­گرم بر لیتر) از طریق تغییر در جذب عناصر سبب تغییر در رشد و غلظت عناصر غذایی گیاه همیشه­بهار تحت تنش شوری می­شود.

کلیدواژه‌ها


Ahmad, P., and M.N.V. Prasad. 2010. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability: Springer Science & Business Media.
Alizadeh, A. 2008. Water, soil, plant. Astane Ghodse Razavi, 8th edition. p.472.
Aminian, R., Paknejad, M., and S. M. Hoseini. 2017. Effect of nano titanium dioxide on yield and yield components of safflower under normal and low irrigation.  Environmental Stresses in Crop Science. 10(3): 377-390. 
Babaie, K., Amini Dehaghi, M., Modares Sanavi, A., and Jabbari, R. 2010. Effect of saline stress on morphological, physiologic and chemical characteristics of Thyme (Thymus vulgaris L.). Agronomy Journal (Pajouhesh & Sazandegi). 86: 71-79.
Bernstein, N., Kravchik, M., and N. Dudai. 2010. Salinity‐induced changes in essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum) in relation to alterations of morphological development. Annals of Applied Biology. 156(2): 167-177.
Scagel, C.F., Lee, J., and J.N. Mitchell. 2019. Salinity from NaCl changes the nutrient and polyphenolic composition of basil leaves. Industrial Crops and Products. 127 :119-128.
Farsaraei, S., Mehdizadeh, L., Moghaddam, M., and H. Ebrahimi. 2018. Effect of foliar application of putrescine on biomass, water relative content and mineral elements of sweet basil (Ocimum basilicum L. cv. Genove) under salinity stress. Journal of Plant Process and Function. 8(33): 399-411.
Feizi, H., Rezvani Moghadam, P., Fotovat, A., and N. Shah Tahmasbi. 2011. Reaction of wheat seed to different concentrations of titanium dioxide nanoparticles in comparison with nonnano-particles. Processing of 2th congress on science and technology seed. Nov. 4-5, Mashhad, Iran. pp. 565-569.
Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., and F. Hong. 2008. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activate? .Biometals. 21(2): 211-7.
Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M.R., Fotopoulos, J., and V.S. Kimura, 2020. Titanium dioxide nanoparticles (Ti2ONPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Science Report. 10(1): 1-14.
Gupta, B, and B. Huang. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal Genomics. 2014: 1-18.
Haghighi, M., Heidarian, S., and  J.A. Teixeira Dasilva. 2012. The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of Tomato. Biological Trace Element Research. 150: 381-390.
Hurtado, A.C., Chiconato, D.A., de Mello Prado, R., da Silveira Sousa Junior, D., Olivera Viciedo, D., and M. de Cássia Piccolo. 2020. Silicon application induces changes C:N:P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi Journal of Biological Sciences. 27(12): 3711-3719.
Jabalbarezi, B., Zareie, M., Karimian, N. and M.J. Saharkhiz. 2015. Effect of arbuscular mycorrhizal fungi on nutrient uptake, some growth indices and essential oil content of Satureja hortensis under salinity stress conditions. Journal of Water and Soil Science. 25(4/2): 285-299.
Javadipour, Z., Movahedi Dehnavi, M., and H.R. Baluchi. 2015. Evaluation of photosynthetic parameters, content and chlorophyll fluorescence of leaf safflower cultivars under salinity stress. Electronic Journal of Crop Production. 6(2): 35-56.
Kafi, M., and A. Damghani. 2000. Tolerance mechanisms of plants to environmental stresses. Ferdowsi University of Mashhad.
 
Kalhor, M., Dehestani-Ardakani, M., Shirmardi, M., and J. Gholamnejad. 2018. Response of pot marigold (Calendula officinalis L.) to interaction effects of salt stress and organic soil amendments. Environmental Stresses Crop Sciences. 11(4): 1005-1021.
Kamali1, M., Shoor, M., and H. Feizi. 2018. Impacts of nanosized and bulk titanium dioxide on flowering and morphophysiological traits of Petunia (Petunia hybrida) under salinity stress. Journal of Horticultural Science. 32(2): 199-212.
Karami, A., and A. Sepehri. 2018. Effect of nano titanium dioxide and sodium nitroprusside on seed germination, vigor index and antioxidant enzymes of Afzal barley seedling under salinity stress. Iranian Journal of Seed Science and Research. 5(3): 47-61.
Khan, M.N., Mobin, M., Abbas, Z.K., ALMutairi, K.A., and Z.H. Siddiqui. 2017. Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry. 110: 194-209.
Klancnik, K., Drobne, D., Valant, J., and Dolenc Koce, J. 2011. Use of a modified Allium test with nanoTio2. Ecotoxicology and Environmental Safety. 74:85-92.
Kleiber, T., and B. Markiewicz. 2013. Application of “Tytanit” in greenhouse tomato growing. Acta Scientiarum Polonorum Horticulture. 12:117-126.
Latef, A.A.H.A., Srivastava, A.K., Abd El‐sadek, M.S., Kordrostami, M., and L.S.P. Tran. 2018. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation and Development. 29: 1065-1073.
Mehdizadeh, L., Moghaddam, M., and A. Lakzian. 2019. Alleviating negative effects of salinity stress in summer savory (Satureja hortensis L.) by biochar application. Acta Physiologiae Plantarum. 41(6): 98-111.
Moaveni, P. 2010. Foundation of plant physiology in dry and salty conditions. Islamic Azad University of Ghods city branch.
Mehdizadeh, L., Moghaddam, M., and A. Lakzian, 2020. Amelioration of soil properties, growth and leaf mineral elements of summer savory under salt stress and biochar application in alkaline soil. Scientia Horticulturae. 267: 109319-109330.
Molavi, H., Mohammadi, M., and A. Liaghat. 2011. Effect of salinity water management during growth period on yield and yield contents of maize in soil salinity profile. Journal of Irrigation Science and Engineering. 35(3): 11-18.
Morteza, E., Moaveni, P., Farahani, H.A., and M. Kiyani. 2013. Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus. 2: 247-260.
Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review Plant Physiology. 59: 651-681.
Noorani Azad, H., and M.R. Haji Bagheri. 2008. Effect of salinity stress on some physiological characteristics of Anthum graveolens L. Agroecology Journal. 4(12): 93-100.
Omidbeigi, R. 2012. Production and Processing of Medicinal Plants. Vol. 2, Astan Quds Publication, Tehran.
Parihar, P., Singh, S., Singh, R., Singh, V.P., and S.M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research. 22(6): 4056-4075.
Rasouli, F., Abedini, F., and S.M. Zahedi. 2016. The effect of Titanium nano dioxide on physiological particular and chlorophyll fluorescence parameters in Eggplant (Solanum melongena L.) under water deficit stress. Journal of Vegetables Sciences. 2(4): 37- 51.
Razghandi, J. 2014. Investigation the effect of salinity stress on morphological and physiological characteristics of 5 population of summer savory.  Master of Arts thesis, Ferdowsi University of Mashhad, Mashhad, Iran.
Rojas-Tapias, D., Moreno-Galvan, A., Pardo-Diaz, S., Obando, M., Rivera, D., and R. Bonilla. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology. 61: 264-272.
Ruffini, C.M., and R. Cremonini. 2009. Nanoparticles and higher plants. Caryologia. 62(2): 161-165.
Saberi, S., Ghasimi Hagh, Z., and Sh. Mostafavi. 2012. Impact and mechanisms of Nano Titanium Dioxide on physiological processes spinach. Second National Conference on Sustainable Agricultural Development healthy environment. 16 Page
Zhu, J.K. 2001. Plant salt tolerance. Trends in Plant Science. 6(2): 66-71.
 Sabet Teimouri, M., Khazaie, H.R., Nassiri Mahallati, M.,  and A. Nezami. 2010. Effect of salinity on seed yield and yield components of individual plants, morphological characteristics and leaf chlorophyll content of sesame (Sesamum indicum L.). Environmental Stresses in Crop Science. 2(2): 119-130.
Sawhney, A.P.S., and B. Condon 2008. Modern Applications of Nanotechnology in Textiles. Textile Research Journal. 78: 731-739.
Shah, V., and I. Belozerova. 2009 Influence of metal nanoparticles on the soil microbial xommunity andgermination of Lettuce seeds. Water, Air, and Soil Pollution. 197(1): 143-148.
Sharma, S., and K.N. Uttam. 2019. Non-invasive monitoring of biochemical response of wheat seedlings toward titanium dioxide nanoparticles treatment using attenuated total reflectance fourier transform infrared and laser induced fluorescence spectroscopy. Analytical Letters. 52(10): 1629-1652.
Sodaeizadeh, H., Tajamolian, M., and M. Rafiei Hoseini. 2016. Effect of composing of sweet and salty water on some morphological index of Satureja hortensis. Crop and Environmental Stress. 1(1): 55-65.
Tavallali, V., Rahemi, M., Eshghi, S., Kholdbarin, B., and A. Ramezanian. 2010. Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. Badami) seedlings. Turkish Journal of Agriculture and Forestry. 34: 349-359.
Tighe-Neira, R., Reyes-Díaz, M., Nunes-Nesi, A., Recio, G., Carmona, E., Corgne, A., Rengel, Z., and C. Inostroza-Blancheteau. 2020. Titanium dioxide nanoparticles provoke transient increase in photosynthetic performance and differential response in antioxidant system in Raphanus sativus L. Scientia Horticulturae. 269: 109418.-109430.
Teimouri, A., and M. Jafari. 2010. The effects of salinity stress on some of anatomical and morphological characteristics in three Salsola species: S. rigida, S. dendroides, S. richteri. Iranian Journal of Range and Desert Research. 17(1): 21-34.
Valdiani, A., Hassan Zadeh, A., and M. Tajbakhsh. 2005. Study on the effects of salt stress in germination and embryo growth stages of the four prolific and new cultivars of winter rapeseed (Brassica napus L.). Pajouhesh-va-Sazandegi.   18 (66): 23-32.
Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., and P. Yang. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Journal of Trace Elements Research. 110(2): 179-190.
Yu, X., Liang, C., Chen, J., Qi, X., Liu, Y., and Y. Li. 2015. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Scientia Horticulturae. 197(4): 579-583.
Zargari, A. 2012. Medicinal plants.  Volume 4. Tehran University Publishing.
Zheng L., Mingyu S., Xiao W., Chao L., Chunxiang Q., Liang C., Hao H., Xiaoqing L., and H. Fashui. 2007. Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of Spinach. Biological Trace Element Research Journal. 120: 273-283.